Spelling suggestions: "subject:"climatic schemes.mathematical models"" "subject:"climatic themathematical models""
11 |
Using mathematical models to understand the impact of climate change on tick-borne infections across ScotlandWorton, Adrian J. January 2016 (has links)
Ticks are of global interest as the pathogens they spread can cause diseases that are of importance to both human health and economies. In Scotland, the most populous tick species is the sheep tick Ixodes ricinus, which is the vector of pathogens causing diseases such as Lyme borreliosis and Louping-ill. Recently, both the density and spread of I. ricinus ticks have grown across much of Europe, including Scotland, increasing disease risk. Due to the nature of the tick lifecycle they are particularly dependent on environmental factors, including temperature and habitat type. Because of this, the recent increase in tick-borne disease risk is believed to be linked to climate change. Many mathematical models have been used to explore the interactions between ticks and factors within their environments; this thesis begins by presenting a thorough review of previous modelling of tick and tick-borne pathogen dynamics, identifying current knowledge gaps. The main body of this thesis introduces an original mathematical modelling framework with the aim to further our understanding of the impact of climate change on tick-borne disease risk. This modelling framework takes into account how key environmental factors influence the I. ricinus lifecycle, and is used to create predictions of how I. ricinus density and disease risk will change across Scotland under future climate warming scenarios. These predictions are mapped using Geographical Information System software to give a clear spatial representation of the model predictions. It was found that as temperatures increase, so to do I. ricinus densities, as well as Louping-ill and Lyme borreliosis risk. These results give a strong indication of the disease risk implications of any changes to the Scottish environment, and so have the potential to inform policy-making. Additionally, the models identify areas of possible future research.
|
12 |
The correlation of sea surface temperatures, sea level pressure and vertical wind shear with ten tropical cyclones between 1981-2010Compton, Andrea Jean 12 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI)
|
13 |
Spatiotemporal analysis of extreme heat events in Indianapolis and Philadelphia for the years 2010 and 2011Beerval Ravichandra, Kavya Urs 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Over the past two decades, northern parts of the United States have experienced extreme heat conditions. Some of the notable heat wave impacts have occurred in Chicago in 1995 with over 600 reported deaths and in Philadelphia in 1993 with over 180 reported deaths. The distribution of extreme heat events in Indianapolis has varied since the year 2000. The Urban Heat Island effect has caused the temperatures to rise unusually high during the summer months. Although the number of reported deaths in Indianapolis is smaller when compared to Chicago and Philadelphia, the heat wave in the year 2010 affected primarily the vulnerable population comprised of the elderly and the lower socio-economic groups. Studying the spatial distribution of high temperatures in the vulnerable areas helps determine not only the extent of the heat affected areas, but also to devise strategies and methods to plan, mitigate, and tackle extreme heat. In addition, examining spatial patterns of vulnerability can aid in development of a heat warning system to alert the populations at risk during extreme heat events. This study focuses on the qualitative and quantitative methods used to measure extreme heat events. Land surface temperatures obtained from the Landsat TM images provide useful means by which the spatial distribution of temperatures can be studied in relation to the temporal changes and socioeconomic vulnerability. The percentile method used, helps to determine the vulnerable areas and their extents. The maximum temperatures measured using LST conversion of the original digital number values of the Landsat TM images is reliable in terms of identifying the heat-affected regions.
|
Page generated in 0.135 seconds