• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Environmental and health impacts of extreme heat events

Vaidyanathan, Ambarish 21 September 2015 (has links)
In the United States (U.S.), extreme temperature-related deaths account for far more deaths than hurricanes, lightning, tornadoes, floods, and earthquakes combined. An extreme heat event (EHE) or a heat wave is a sustained period of substantially hotter and/or more humid weather. EHEs cause a wide range of health problems such as rashes, cramps, heat exhaustion, heat stroke, and, in some instances, death. Further, meteorology plays a dominant role in the formation of air pollutants. In particular, extremely high temperatures are conducive to the formation of certain air pollutants. In order to understand the adverse health impacts of extreme heat and air pollution levels prevailing during EHEs, it is necessary to define what constitutes a heat episode; however, there is a lack of scientific consensus on definitions and procedures to accurately identify EHEs. This work employs a hierarchical clustering technique to group 92 different EHE definitions into homogeneous sets and uses negative binomial rate regression approach to identify those definitions that are most strongly associated with mortality. Our findings suggest that definitions with thresholds that are either too extreme or too moderate are poorly associated with heat-related mortality for most climate regions. Additionally, the association between air pollution and health, especially mortality, is well understood. However, the role of air pollutants in modifying the relationship between EHEs and mortality is not well characterized in the U.S., yet is critical to generating accurate estimates of health burden. Our results indicate that air pollution confounds the relationship between EHE and mortality, and the extent of confounding varies with climate regions. Further, through this work, the sensitivities associated with selecting an EHE definition is taken into consideration when providing region-specific health and economic burden associated with EHEs. Ideally, the excess deaths and costs presented in this work could be useful to study and quantify the public health risk associated with EHEs, either in a prospective or a retrospective setting.
2

Toward a Better Understanding of the Thermal and Cardiovascular Strain Experienced by Older Adults During Extreme Heat Events

Meade, Robert 12 May 2021 (has links)
This thesis evaluated physiological responses of young and older adults during extreme heat events and the extent to which commonly recommended heat-health guidelines (indoor temperature limits) and heat mitigation strategies (cooling centres) are effective at limiting hyperthermia and cardiovascular burden. A multidisciplinary narrative review and three experimental studies were conducted. In the review, the mechanisms by which aging impairs the regulation of body temperature and hemodynamic stability, and how they may contribute to the increased risk of heat-related mortality and morbidity in older adults, were summarized. A lack of ecologically minded study designs in previous research evaluating the physiological responses supporting homeostasis and health during heat stress (i.e., body temperature regulation and cardiovascular stability) was also identified. The three experiments were therefore designed as day-long (8-9 hour) extreme heat simulations to 1) evaluate age-related alterations in thermoregulatory and cardiovascular function during peak heat conditions; 2) assess how these responses translate to indoor environments; and 3) quantify the effectiveness of cooling centers, a widely recommended heat mitigation strategy, for limiting hyperthermia and cardiovascular burden. In the first study, healthy older adults (age: 64-78 years; n=19) stored 87 kJ [95% confidence limits: 33, 141] more heat than their younger (age: 19-31 years; n=20) counterparts (328 [71] kJ vs. 241 [SD: 87]; P<0.001) during the first three hours of a 9-hour exposure to extreme heat (40°C and 15% relative humidity). This resulted in a 0.4°C [0.2, 0.6] greater increase in body core temperature in the older adults that was maintained throughout exposure (1.0 [0.3] vs 0.6 [0.3]°C; P<0.001). These findings were extended in the second study, wherein it was demonstrated that healthy older adults (age: 66-78 years, n=8) exhibit progressive elevations in body temperatures (P<0.001) and attenuations in cardiovascular autonomic function (P<0.001) during 8 hours of rest in conditions representative of those experienced indoors during extreme heat events. These ranged from an actively cooled environment (22°C), through indoor temperature thresholds recommended by Toronto Public Health (26°C) and the World Health Organization (31°C), to poorly insulated and ventilated homes and/or dwellings without access to air conditioning (36°C; 45% relative humidity in all conditions). In the third study, it was shown that short-term exposure to a cool environment midway through (hours 5-6) a day-long (9 hour) simulated heat event reduced core temperature in a group of healthy older adults (age: 67-78 years; n=8) by 0.8°C [0.6, 1.0] compared to an age-matched group not removed from the heat (from study 1). Despite this, core temperature rose rapidly upon return to the heat and was statistically equivalent in both groups by the end of exposure (37.8 [0.3] vs 37.9 [0.3]°C; P=0.011). The findings of this thesis indicate that even healthy older adults experience sustained elevations in body temperature and cardiovascular burden during extreme heat events and that commonly recommended heat-health guidelines (indoor temperature limits) and mitigation strategies (cooling centres) may not provide adequate protection. Collectively, this work represents a considerable advance in our understanding of the physiological burden experienced by older adults during hot weather and extreme heat events.
3

Spatiotemporal analysis of extreme heat events in Indianapolis and Philadelphia for the years 2010 and 2011

Beerval Ravichandra, Kavya Urs 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Over the past two decades, northern parts of the United States have experienced extreme heat conditions. Some of the notable heat wave impacts have occurred in Chicago in 1995 with over 600 reported deaths and in Philadelphia in 1993 with over 180 reported deaths. The distribution of extreme heat events in Indianapolis has varied since the year 2000. The Urban Heat Island effect has caused the temperatures to rise unusually high during the summer months. Although the number of reported deaths in Indianapolis is smaller when compared to Chicago and Philadelphia, the heat wave in the year 2010 affected primarily the vulnerable population comprised of the elderly and the lower socio-economic groups. Studying the spatial distribution of high temperatures in the vulnerable areas helps determine not only the extent of the heat affected areas, but also to devise strategies and methods to plan, mitigate, and tackle extreme heat. In addition, examining spatial patterns of vulnerability can aid in development of a heat warning system to alert the populations at risk during extreme heat events. This study focuses on the qualitative and quantitative methods used to measure extreme heat events. Land surface temperatures obtained from the Landsat TM images provide useful means by which the spatial distribution of temperatures can be studied in relation to the temporal changes and socioeconomic vulnerability. The percentile method used, helps to determine the vulnerable areas and their extents. The maximum temperatures measured using LST conversion of the original digital number values of the Landsat TM images is reliable in terms of identifying the heat-affected regions.
4

Public perception and response to extreme heat events

Porter, Raymond E. 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the United States extreme heat events have grown in size and stature over the past 20 years. Urban Heat Islands exacerbate these extreme heat events leaving a sizable portion of people at risk for heat related fatalities. The evidence of this is seen in the Chicago heat wave of 1995 which killed 500 people over the course of a week and the European heat wave of 2003 which killed 7,000 people in the course of a month. The main guiding questions then become how government and the media can most effectively warn people about the occurrence of extreme heat events? Should extreme heat warnings be issued by T.V., newspaper or by radio? Even if warnings are issued will the population at large still change their behavior? Another possible question is whether people most vulnerable to extreme heat will change their behavior? A survey in 2010 by NASA will be the main basis for this analysis. This survey set out to see how well people in Phoenix, Philadelphia, and Dayton responded to extreme heat alerts by changing their behavior.

Page generated in 0.0651 seconds