• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motion planning of bipedal wall climbing robots

Ward, James Robert, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2009 (has links)
The development of wall climbing robots is relatively recent, beginning with some large scale robots in the early 1990s. Wall climbing robots can be used to gain access to or inspect space that is not easily accessible or dangerous for human operators. The range of applicable fields encompasses industrial processes and inspection, exploration, rescue and monitoring. The smaller robots can be used for surveillance purposes due to their stealthy nature. Larger crawling robots may be used to carry out specific tasks such as sand blasting of ship hulls and blasting and spray painting of large containers such as cylindrical storage tanks used by the chemical, petroleum and nuclear industries. Their flexibility and mobility mean that they can accomplish tasks that would be impossible for more conventional robots. The flexibility of mobility that such robots gain from their ability to move on all surfaces rather than only horizontal ones creates some unique challenges. Broadly, they can be split into three categories: robot design, robot control and motion planning, and environmental mapping and localisation. This thesis examines the first two of these problems. A prototype bipedal robot has been built and a second designed in order to capitalise on the experience gained with the first. An in-depth examination of the motion planning problem has been made and new techniques to tackle this problem have been developed. Such techniques are not limited to applications with wall climbing robots as there is commonality with more traditional fixed manipulators. Finally, the planning techniques were combined with the robot design in a test scenario that validated both the design and the motion planning techniques developed throughout the dissertation.
2

Planejamento ótimo de trajetórias para um robô escalador. / Optimal trajectory planning for a climbing robot.

Silva, Lucas Franco da 20 February 2018 (has links)
Este trabalho trata do planejamento de trajetórias que minimizam as perdas elétricas no KA\'I yxo, um robô escalador de árvores que tem por finalidade realizar monitoramento ambiental em florestas através da coleta de diferentes tipos de dados. Como essa aplicação requer que o robô permaneça em ambientes remotos, o estudo de técnicas que reduzam as perdas de energia a fim de que se aumente o tempo em operação do robô se mostra relevante, sendo a minimização das perdas elétricas uma contribuição importante nesse sentido. Estruturalmente, o KA\'I yxo consiste em um robô bípede com duas garras e quatro ligamentos interconectados por três juntas rotacionais. Além disso, seu mecanismo de andadura foi biologicamente inspirado na forma de locomoção observada em lagartas mede-palmos, o que permitiu tratar o robô como um manipulador industrial, cuja base é o ligamento associado à garra engastada e cujo efetuador é o ligamento associado à garra livre. Com isso, quando conveniente, o robô foi tratado em dois casos, conforme a garra que se encontra engastada. Inicialmente, realizou-se a modelagem matemática do robô, obtendo-se as equações cinemáticas direta e inversa, e dinâmicas, bem como o modelo das juntas segundo a abordagem do controle independente por junta. Posteriormente, formulou-se um problema de controle ótimo, solucionado através de um método numérico que o transformou em um problema de programação quadrática, que por sua vez foi resolvido iterativamente. Por fim, as trajetórias ótimas planejadas foram implementadas no robô real e, como forma de validação, as novas perdas elétricas foram comparadas com as das trajetórias anteriormente executadas pelo robô, determinando-se a correspondente economia de energia. / This work deals with the minimum-energy trajectory planning, related to the electrical losses, in KA\'I yxo, a tree-climbing robot that aims to perform environmental monitoring in forests through the collection of different types of data. As this application requires that the robot remains in remote environments, the study of techniques that reduce energy losses in order to increase the operation time of the robot is shown to be relevant, and the minimization of the electrical losses is an important contribution in this sense. Structurally, KA\'I yxo consists of a biped robot with two claws and four links interconnected by three revolute joints. In addition, its gait mechanism was biologically inspired in the form of locomotion observed in caterpillars, allowing to treat the robot as an industrial manipulator, which base is the link associated with the fixed claw and which end-effector is the link associated with the free claw. In consequence, when convenient, the robot was treated in two cases, according to the claw that is fixed. Initially, the mathematical model of the robot was developed, being obtained the forward and inverse kinematic and dynamic equations, as well as the model of the joints according to the independent joint control approach. Subsequently, an optimal control problem was formulated, which was solved through a numerical method that turned it into a quadratic programming problem, which in turn was solved iteratively. Finally, the planned optimal trajectories were implemented in the real robot and, as a form of validation, the new electrical losses were compared with those of the trajectories previously executed by the robot, being determined the corresponding energy saving.
3

Planejamento ótimo de trajetórias para um robô escalador. / Optimal trajectory planning for a climbing robot.

Lucas Franco da Silva 20 February 2018 (has links)
Este trabalho trata do planejamento de trajetórias que minimizam as perdas elétricas no KA\'I yxo, um robô escalador de árvores que tem por finalidade realizar monitoramento ambiental em florestas através da coleta de diferentes tipos de dados. Como essa aplicação requer que o robô permaneça em ambientes remotos, o estudo de técnicas que reduzam as perdas de energia a fim de que se aumente o tempo em operação do robô se mostra relevante, sendo a minimização das perdas elétricas uma contribuição importante nesse sentido. Estruturalmente, o KA\'I yxo consiste em um robô bípede com duas garras e quatro ligamentos interconectados por três juntas rotacionais. Além disso, seu mecanismo de andadura foi biologicamente inspirado na forma de locomoção observada em lagartas mede-palmos, o que permitiu tratar o robô como um manipulador industrial, cuja base é o ligamento associado à garra engastada e cujo efetuador é o ligamento associado à garra livre. Com isso, quando conveniente, o robô foi tratado em dois casos, conforme a garra que se encontra engastada. Inicialmente, realizou-se a modelagem matemática do robô, obtendo-se as equações cinemáticas direta e inversa, e dinâmicas, bem como o modelo das juntas segundo a abordagem do controle independente por junta. Posteriormente, formulou-se um problema de controle ótimo, solucionado através de um método numérico que o transformou em um problema de programação quadrática, que por sua vez foi resolvido iterativamente. Por fim, as trajetórias ótimas planejadas foram implementadas no robô real e, como forma de validação, as novas perdas elétricas foram comparadas com as das trajetórias anteriormente executadas pelo robô, determinando-se a correspondente economia de energia. / This work deals with the minimum-energy trajectory planning, related to the electrical losses, in KA\'I yxo, a tree-climbing robot that aims to perform environmental monitoring in forests through the collection of different types of data. As this application requires that the robot remains in remote environments, the study of techniques that reduce energy losses in order to increase the operation time of the robot is shown to be relevant, and the minimization of the electrical losses is an important contribution in this sense. Structurally, KA\'I yxo consists of a biped robot with two claws and four links interconnected by three revolute joints. In addition, its gait mechanism was biologically inspired in the form of locomotion observed in caterpillars, allowing to treat the robot as an industrial manipulator, which base is the link associated with the fixed claw and which end-effector is the link associated with the free claw. In consequence, when convenient, the robot was treated in two cases, according to the claw that is fixed. Initially, the mathematical model of the robot was developed, being obtained the forward and inverse kinematic and dynamic equations, as well as the model of the joints according to the independent joint control approach. Subsequently, an optimal control problem was formulated, which was solved through a numerical method that turned it into a quadratic programming problem, which in turn was solved iteratively. Finally, the planned optimal trajectories were implemented in the real robot and, as a form of validation, the new electrical losses were compared with those of the trajectories previously executed by the robot, being determined the corresponding energy saving.
4

[en] DESIGN AND ACTIVATION OF A PNEUMATIC GECKO ROBOT WITH APPLICATION OF MACHINE LEARNING / [pt] PROJETO E ACIONAMENTO DE UM ROBÔ LAGARTIXA PNEUMÁTICO COM APLICAÇÃO DE APRENDIZADO COMPUTACIONAL

MATHEUS RODRIGUES GOEBEL 07 November 2022 (has links)
[pt] Este trabalho apresenta um projeto mecânico de um robô lagartixa pneumática, capaz de se locomover em superfícies inclinadas em relação ao solo, através apenas de atuadores lineares que utilizam o ar comprimido como fonte de energia. Como parte fundamental do projeto mecânico neste trabalho, um sistema de garra é desenvolvido gerando vácuo mecanicamente, para haver uma economia de consumo energético no robô em comparação com os acessórios comerciais geralmente utilizados para esta tarefa de fixação. Com o protótipo de conceito fabricado e montado, o mesmo é submetido a uma bateria de testes com o intuito de posteriormente aplicar os dados obtidos em uma rede neural artificial, visando o aprendizado computacional dos movimentos do robô e, assim, sua otimização de velocidade em determinada sequência de movimentação. Após o treinamento desta rede neural, o protótipo é submetido a novos experimentos para verificar a eficiência do treinamento realizado e qual o impacto real obtido no robô. Finalmente, com a utilização de um sistema de câmeras, os deslocamentos do robô em diversas situações distintas são rastreados, visando gerar gráficos comparativos e analisar a repetibilidade e confiabilidade do sistema. / [en] This work presents the mechanical design of a pneumatic gecko robot, capable of moving on inclined surfaces with respect to the ground, using only linear actuators with compressed air as a source of energy. As a fundamental part of the mechanical design in this work, a claw system is developed by generating vacuum mechanically, significantly reducing the energy consumption of the robot when compared to commercial accessories generally used for this clamping task. With the concept prototype manufactured and assembled, a series of tests are conducted to later apply the collected data in an artificial neural network. This network allows the computational learning of the robot movements, and thus its speed optimization for a certain defined gait. After training this neural network, the prototype is submitted to new experiments to verify the efficiency of the training performed and the real impact obtained on the robot. Furthermore, with the use of a camera system, the movements of the robot along several different situations are tracked, generating comparative graphs to analyze the repeatability and reliability of the system.

Page generated in 0.046 seconds