Spelling suggestions: "subject:"block model"" "subject:"block godel""
1 |
ELECTRONIC FRACTALS IN QUANTUM MATERIALSForrest Simmons (15354304) 27 April 2023 (has links)
<p> Surface probes are producing a huge variety of spatially resolved images of materials during phase transitions. These images have complex pattern formation present across a variety of length scales. Here, I apply image cluster scaling analysis and machine learning to several such images. First, I apply cluster analysis techniques to charge stripe orientations in Bi2−zPbzSr2−yLayCuO6+x. Our experimental collaborators observe stripes with period 4a0 in Bi2−zPbzSr2−yLayCuO6+x. [1] The local orientation of these stripes forms complex patterns from which we extract relationships involving cluster sizes. We compare these experimental exponents to those computed at a phase transition in the following models: 2D percolation and the 2D and 3D clean and random field Ising models. We find that only the 3D clean and random field Ising models are consistent with the data. Combined with the stability of these exponents across the superconducting region, we conclude that the system is in the random field Ising model universality class. We apply these same cluster techniques to period-4 antiferromagnet order in NdNiO3. [2] Our experimental collaborators observed the intensity for 2 of 8 possible directions for period-4 antiferromagnetic order in NdNiO3 and find complex pattern formation that remains after a temperature cycle past the hysteresis loop. We threshold this experimental data and extract cluster exponents for this system. We then compare these models to the 4-state clean and random field clock models. This exponent comparison shows that the 4-state random field clock model is a match for the experimental data. We then train a convolutional neural network to distinguish the 4-state clean and random field clock models. The fit neural net is capable of labeling our entire testing dataset of 16000 images with 100% accuracy. This gives us a 95% confidence interval of (0.9998, 1) by the rule of three. [3] We then split the field of view into 52 sliding windows of the original experimental data which we feed into the trained model. The model classifies every input window as a 2D random field clock model which gives us a 95% confidence interval of (0.94, 1). The observed hysteresis in the experimental data, the cluster analysis and the machine learning prediction clearly show the observed patterns are in the random field 4-state clock model universality class. </p>
|
2 |
Algoritmos de otimização e criticalidade auto-organizada / Optimization algorithms and self-organized criticalityCastro, Paulo Alexandre de 22 April 2002 (has links)
As teorias científicas surgiram da necessidade do homem entender o funcionamento das coisas. Novos métodos e técnicas são então criados com o objetivo não só de melhor compreender, mas também de desenvolver essas próprias teorias. Nesta dissertação, vamos estudar várias dessas técnicas (aqui chamadas de algoritmos) com o objetivo de obter estados fundamentais em sistemas de spin e de revelar suas possíveis propriedades de auto-organização crítica. No segundo capítulo desta dissertação, apresentamos os algoritmos de otimização: simulated annealing, algoritmo genético, otimização extrema (EO) e evolutivo de Bak-Sneppen (BS). No terceiro capítulo apresentamos o conceito de criticalidade auto-organizada (SOC), usando como exemplo o modelo da pilha de areia. Para uma melhor compreensão da importância da criticalidade auto-organizada, apresentamos vários outros exemplos de onde o fenômeno é observado. No quarto capítulo apresentamos o modelo de relógio quiral de p-estados que será nosso sistema de testes. No caso unidimensional, determinamos a matriz de transferência e utilizamos o teorema de Perron-Frobenius para provar a inexistência de transição de fase a temperaturas finitas a temperaturas finitas. Esboçamos os diagramas de fases dos estados fundamentais que obtivemos de maneira analítica e numérica para os casos de p = 2, 3, 4, 5 e 6, no caso numérico fazendo uso do algoritmo de Bak-Sneppen com sorteio (BSS). Apresentamos ainda um breve estudo do número de mínimos locais para o modelo de relógio quiral de p-estados, para os casos de p = 3 e 4. Por último, no quinto capítulo, propomos uma dinâmica Bak-Sneppen com ruído (BSR) como uma nova técnica de otimização para tratar sistemas discretos. O ruído é introduzido diretamente no espaço de configuração de spins. Conseqüentemente, o fitness (adaptabilidade) passa a assumir valores contínuos, num pequeno intervalo em torno do seu valor original (discreto). Os resultados dessa dinâmica indicam a presença de criticalidade auto-organizada, evidenciada pelo decaimento em leis de potências das correlações espacial e temporal. Também estudamos o método EO e obtivemos uma confirmação numérica de que sua dinâmica exibe um comportamento não crítico com alcance espacial infinito e decaimento exponencial das avalanches. Finalmente, para o modelo de relógio quiral, comparamos a eficiência das três dinâmicas (EO, BSS e BSR) no que tange às suas habilidades de encontrar o estado fundamental do sistema. / In order to understand how things work, man has formulated scientific theories. New methods and techniques have been created not only to increase our understanding on the subject but also to develop and even expand those theories. In this thesis, we study several techniques (here called algorithms) designed with the objective to get the ground states of some spin systems and eventually to reveal possible properties of critical self-organization. In the second chapter, we introduce four fundamental optimization algorithms: simulated annealing, genetics algorithms, extremal optimization (EO) and Bak-Sneppen (BS). In the third chapter we present the concept of self-organized criticality (SOC), using as an example the sandpile model. To understand the importance of the self-organized criticality, we show many other situations where the phenomenon can be observed. In the fourth chapter, we introduce the p-states chiral clock model. This will be our test or toy system. For the one-dimensional case, we first determined the corresponding transfer-matrix and then proved the nonexistence of phase transitions by using the Perron-Frobenius theorem. We calculate the ground state phase diagrams both analytically and numerically in the cases of p = 2, 3, 4, 5 and 6. We also present a brief study of the number of local minima for the cases p = 3 and 4 of the chiral clock model. Finally, in the fifth chapter, we propose a Bak-Sneppen dynamics with noise (BSN) as a new technique of optimization to treat discrete systems. The noise is directly introduced into the spin configuration space. Consequently, the fitness now take values in a continuum but small interval around its original value (discrete). The results of this dynamics indicate the presence of self-organized criticality, which becomes evident with the power law scaling of the spacial and temporal correlations. We also study the EO algorithm and found a numerical con_rmation that it does not show a critical behavior since it has an in_nite space range and an exponential decay of the avalanches. At the end, we compare the e_ciency of the three dynamics (EO, BSD and BSN) for the chiral clock model, concerning their abilities to _nd the system\'s ground state.
|
3 |
Algoritmos de otimização e criticalidade auto-organizada / Optimization algorithms and self-organized criticalityPaulo Alexandre de Castro 22 April 2002 (has links)
As teorias científicas surgiram da necessidade do homem entender o funcionamento das coisas. Novos métodos e técnicas são então criados com o objetivo não só de melhor compreender, mas também de desenvolver essas próprias teorias. Nesta dissertação, vamos estudar várias dessas técnicas (aqui chamadas de algoritmos) com o objetivo de obter estados fundamentais em sistemas de spin e de revelar suas possíveis propriedades de auto-organização crítica. No segundo capítulo desta dissertação, apresentamos os algoritmos de otimização: simulated annealing, algoritmo genético, otimização extrema (EO) e evolutivo de Bak-Sneppen (BS). No terceiro capítulo apresentamos o conceito de criticalidade auto-organizada (SOC), usando como exemplo o modelo da pilha de areia. Para uma melhor compreensão da importância da criticalidade auto-organizada, apresentamos vários outros exemplos de onde o fenômeno é observado. No quarto capítulo apresentamos o modelo de relógio quiral de p-estados que será nosso sistema de testes. No caso unidimensional, determinamos a matriz de transferência e utilizamos o teorema de Perron-Frobenius para provar a inexistência de transição de fase a temperaturas finitas a temperaturas finitas. Esboçamos os diagramas de fases dos estados fundamentais que obtivemos de maneira analítica e numérica para os casos de p = 2, 3, 4, 5 e 6, no caso numérico fazendo uso do algoritmo de Bak-Sneppen com sorteio (BSS). Apresentamos ainda um breve estudo do número de mínimos locais para o modelo de relógio quiral de p-estados, para os casos de p = 3 e 4. Por último, no quinto capítulo, propomos uma dinâmica Bak-Sneppen com ruído (BSR) como uma nova técnica de otimização para tratar sistemas discretos. O ruído é introduzido diretamente no espaço de configuração de spins. Conseqüentemente, o fitness (adaptabilidade) passa a assumir valores contínuos, num pequeno intervalo em torno do seu valor original (discreto). Os resultados dessa dinâmica indicam a presença de criticalidade auto-organizada, evidenciada pelo decaimento em leis de potências das correlações espacial e temporal. Também estudamos o método EO e obtivemos uma confirmação numérica de que sua dinâmica exibe um comportamento não crítico com alcance espacial infinito e decaimento exponencial das avalanches. Finalmente, para o modelo de relógio quiral, comparamos a eficiência das três dinâmicas (EO, BSS e BSR) no que tange às suas habilidades de encontrar o estado fundamental do sistema. / In order to understand how things work, man has formulated scientific theories. New methods and techniques have been created not only to increase our understanding on the subject but also to develop and even expand those theories. In this thesis, we study several techniques (here called algorithms) designed with the objective to get the ground states of some spin systems and eventually to reveal possible properties of critical self-organization. In the second chapter, we introduce four fundamental optimization algorithms: simulated annealing, genetics algorithms, extremal optimization (EO) and Bak-Sneppen (BS). In the third chapter we present the concept of self-organized criticality (SOC), using as an example the sandpile model. To understand the importance of the self-organized criticality, we show many other situations where the phenomenon can be observed. In the fourth chapter, we introduce the p-states chiral clock model. This will be our test or toy system. For the one-dimensional case, we first determined the corresponding transfer-matrix and then proved the nonexistence of phase transitions by using the Perron-Frobenius theorem. We calculate the ground state phase diagrams both analytically and numerically in the cases of p = 2, 3, 4, 5 and 6. We also present a brief study of the number of local minima for the cases p = 3 and 4 of the chiral clock model. Finally, in the fifth chapter, we propose a Bak-Sneppen dynamics with noise (BSN) as a new technique of optimization to treat discrete systems. The noise is directly introduced into the spin configuration space. Consequently, the fitness now take values in a continuum but small interval around its original value (discrete). The results of this dynamics indicate the presence of self-organized criticality, which becomes evident with the power law scaling of the spacial and temporal correlations. We also study the EO algorithm and found a numerical con_rmation that it does not show a critical behavior since it has an in_nite space range and an exponential decay of the avalanches. At the end, we compare the e_ciency of the three dynamics (EO, BSD and BSN) for the chiral clock model, concerning their abilities to _nd the system\'s ground state.
|
Page generated in 0.3302 seconds