• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 4
  • 3
  • 2
  • Tagged with
  • 47
  • 47
  • 16
  • 13
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la microstructure et des transitions de phases électroniques et cristallines de couches épitaxiales de VO₂ déposées sur différents substrats / Synthesis, structural and physical characterizations of phase transition thin films for micro and nanoelectronic applications.

Thery, Virginie 10 November 2017 (has links)
Les travaux de recherche présentés dans ce manuscrit concernent l'étude du rôle des déformations (épitaxiale et d'origine thermique) sur les transitions structurales et électriques du dioxyde de vanadium. A cet effet, nous avons synthétisé des films minces de VO₂ par évaporation à faisceau d'électrons et par ablation laser. La géométrie des déformations est contrôlée en modifiant, d'une part, la nature des substrats et, d'autre part, l'épaisseur des dépôts. Dans le cas de la croissance sur des substrats de saphir (Al₂ O₃ ) orientés (001), le fort désaccord de réseau entraîne une croissance par coïncidence de domaine, de sorte que les déformations résiduelles résultent exclusivement du désaccord de coefficient de dilatation entre la couche et le substrat. L'étude de la transition structurale par diffraction des rayons X et l'étude de la résistivité électrique via un dispositif 4 pointes ont montré que la déformation en tension selon l'axe cᵣ conduit à une augmentation de la température de transition (> 68◦ C). L'apparition d'une phase intermédiaire a été mise en évidence au cours de l'étude structurale en température. La croissance sur des substrats de TiO₂ orientés (001) et (111) est caractérisée par un désaccord de réseau de plus faible (∼ 1%) avec une épaisseur critique de 4 nm, à partir de laquelle des dislocations sont créées en vue de relaxer l'énergie élastique. L'étude des transitions électriques et structurales a mis en évidence que l'évolution des transitions résulte d'une compétition entre les déformations épitaxiales, les déformations d'origine thermique et la présence de lacunes d'oxygène à l'interface. / The research presented in this manuscript deals the study of the effect of strain (epitaxial or thermal) on the structural and the electrical transitions of vanadium dioxide. VO₂ thin films have been synthesized by e-beam deposition and Pulsed Laser Deposition methods. The strain geometry is controlled by modifying, on the one hand, the nature of the substrates and, on the other hand, the thickness of thin films. In the case of (001) sapphire substrates (Al₂ O₃ ), the important lattice mismatch leads to a domain matching epitaxial growth mechanism, so that the residual strain solely result from the film/substrate thermal expansion mismatch. The study of the structural phase transition, using X-ray diffraction, and the study of the metal-insulator transition, using a 4-probes device, showed that the tensile strain along the cᵣ axis leads to an increase of the transition temperature (> 68◦ C). The appearance of an intermediate phase was demonstrated during the study of the structural phase transition. Growth on (001)- and (111)-TiO₂ substrates is characterized by a weaker lattice mismatch (∼ 1%), with a critical thickness of 4 nm, from which dislocations are created to relax the elastic energy. The study of electrical and structural transitions has shown that the evolution of transitions results from a competition between epitaxial distorsion, thermal distorsions and the presence of oxygen vacancies at the interface.
2

Nano-size effects on optical, structural and phononic properties of VO2 and WO3 by ultrasonic-nebulizer spray pyrolysis technique

Mwakikunga, Bonex Wakufwa 22 February 2007 (has links)
Student Number : 0420699F - MSc Dissertation - School of Physics - Faculty of Science / This dissertation presents for the first time the conditions for the synthesis of VO2 by ultrasonic nebula-spray pyrolysis (UNSP) from a precursor solution of NH4VO3+VCl3 optimized as follows: a carrier gas of argon at a flow rate of 11 liters per minute, a furnace temperature of 400 to 700oC. This work also incorporates thermodynamic variables of Tpr-P-V into the equations that relate the mean diameter of droplets, D, to frequency of the exciting ultrasound waves, f, the density of the precursor solution, #26; and the surface tension, #27;, previously worked on independently by Lang and Jokanovic. The incorporation results in the diameters of the droplets (and consequently the collected grains) being smaller as p and Tpr are increased in a non- linear form. The variable V, however, increases the diameter of the droplets as it is allowed to increase. This study shows the departures many authors find of the theory from experiment but it also shows that the departure does not lie in the equations but rather on post- synthesis and annealing effects. From X-ray diffraction, scanning electron microscopy (SEM) and Raman spectroscopy, this study shows that as furnace temperature is increased the morphology of the sample surfaces for both VO2 and WO3 transforms from amorphous to crystalline, from spherical grains to plate-like structures, with grain mean diameter increasing non-linearly in some cases and decreasing non-linearly in other cases confirming previous findings, the latter enjoying the majority vote. In Raman spectra of the as- obtained WO3, asymmetric broadening of the Raman peaks was observed in some samples and a phonon confinement model was employed in the size distribution prediction. These findings prompted the re- workout of the phonon confinement model. In this dissertation an equation has been derived based on the Faucet-Campbell equation of the PC model. The new equation relates the ratio of neighboring peaks in a material’s Raman spectrum to the mean diameter of the grains. The present modification allows the PCM model to predict the grain size beyond the current limiting range of 0 to 100 nm. Analysis of the experimental data using this equation unveils two different equations- one for particles of size below 100 nm and the other equation for particles with larger that 100 nm. Also this analysis has enabled the present study to evaluate the phonon dispersion relations for WO3.
3

Tunable Multifunctionalities in Oxide-based Phase Change Nanocomposite Thin Films

Zihao He (14190335) 06 December 2022 (has links)
<p>Phase change materials (PCMs) has emerged as advanced functional materials for efficient thermal energy storage and release. Compared to other organic and inorganic PCMs, oxide-based PCMs have attracted growing interest because of small volume expansion, minor leakage issue, and moderate latent heat. In this dissertation, two special cases of oxide-based PCMs is discussed, i.e., vanadium dioxide (VO<sub>2</sub>), and Bi-based perovskite/supercell structures. Specifically, VO<sub>2</sub> emerges as a focus of research because of its well-known semiconductor-to-metal transition (SMT) upon heating close to 68 °C. The intrinsic coupling of SMT and R-M1 structural change makes VO<sub>2</sub> a favorite material both scientifically interesting and technologically important for potential sensor and memory device applications. On the other hand, BFMO supercell structure originates from the double-perovskites, while the substrate-induced epitaxial strain induces the stacking and commensurate modulations of Fe/Mn double layers. The significantly enhanced multiferroic response is attributed to its non-centrosymmetric structure.</p> <p>In this dissertation, a comprehensive study on the FM integration and novel approaches to achieve broad range transition temperature (<em>T</em><sub><em>c</em></sub>) tuning is explored in VO<sub>2</sub> thin films. Specifically, three novel metal/VO<sub>2</sub> nanocomposite designs are discussed, i.e., Pt/VO<sub>2</sub>, Ni/VO<sub>2</sub> and Li/VO<sub>2</sub>, with different morphology and Tc tuning mechanisms. First, by reconstructing the energy band structure at the metal/VO<sub>2</sub> interface, bidirectional <em>T</em><sub><em>c</em></sub> tuning in Pt/VO<sub>2</sub> nanocomposites can be achieved owing to the size dependent work function of Pt NPs. Next, by engineering the morphology by lattice matching, diffusion kinetics, and interfacial mixing, the exploration on Ni/VO<sub>2</sub> nanocomposites achieve the combined goals of Tc tuning and magnetic incorporation/magneto-optical (MO) coupling. Finally, by varying Li concentration during the metal-ion intercalation, <em>T</em><sub><em>c</em></sub> of both VO<sub>2</sub>(B) and VO<sub>2</sub>(M1) thin films can be systematically tailored because of structural deformation and the change in charge carrier density. The demonstration of metal/VO<sub>2</sub> nanocomposite thin films reveals a promising approach to fulfill various working environments for VO<sub>2</sub>-based novel electronics, photonics, and spintronics. Furthermore, the microstructure evolution of the ultrathin BFMO supercell structure as well as its physical properties is first studied. The robust ferromagnetic and ferroelectric response is preserved in the ultrathin structure less than 10 nm, making it an attractive candidate for next-generation spintronics based on 2D materials.</p>
4

Thermochromic properties of VO2 nano-coatings by inverted cylindrical magnetron sputtering

Madiba, Itani Given January 2012 (has links)
>Magister Scientiae - MSc / Vanadium dioxide (VO2) films have been known as the most feasible thermochromic nano-coatings for smart windows which self control the solar radiation and heat transfer for energy saving and comfort in houses and automotives. Such an attractive technological application is due to the fact that VO2 crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature TM of about 68°C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated to the nature of the microstructure, stoichiometry and some other surrounding parameters of the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of VO2 thin films synthesized by inverted cylindrical magnetron sputtering. Vanadium dioxide thin films were deposited on glass substrate, at various temperatures between 350 to 600 0C, deposition time kept constant at 1 hour. Prior the experiment, deposition conditions such as base pressure, oxygen pressure, rf power and target-substrate distance were carefully optimized for the quality of VO2 thin films. The reports results are based on AFM, XRD, RBS, ERDA and UV-VIS. The atomic force microscopy (AFM) was used to study the surface roughness of the thin films. Microstructures and orientation of grain size within the VO2 thin films were investigated by the use of X-ray diffraction technique. The stoichiometry and depth profiles of the films were all confirmed by RBS and ERDA respectively. The optical properties of VO2 were observed using the UV-Vis spectrophotometer.
5

Ablation laser impulsionnelle : source de nanoparticules en vol et de films minces : Développement de matériaux nanostructurés à base d'argent, de vanadium et de dioxyde de vanadium / Pulsed laser ablation : a source of in-flight nanoparticles and thin films : Development of nanostructured composites made of silver, vanadium, and vanadium dioxide

Gaudin, Michael 09 June 2017 (has links)
Ces travaux de thèse portent sur le développement d’un dispositif de synthèse de nanoparticules (NPs) par une voie physique basée sur la pulvérisation laser d’une cible suivie d’une trempe du panache plasma ainsi formé. L’association de cette source à une enceinte d’ablation laser conventionnelle a permis de synthétiser des NPs d’argent et de vanadium empilées sur des substrats ou noyées dans des matrices synthétisées par ablation laser. Des analyses par microscopie électronique en transmission (MET) et microscope à force atomique (AFM) ont révélé des NPs cristallisées en vol, de forme sphérique et de tailles relativement monodisperses (~ 3 nm de diamètre) fonction de leur temps de séjour dans la cavité de nucléation. La réalisation de nanocomposites Al2O3 amorphe dopée par des NPs d’argent métallique de différentes tailles a montré l’influence de la taille de ces entités nanométriques sur la position et la largeur de la résonance plasmon de surface (RPS) du matériau nanostructuré. Les NPs gardent leur forme originelle après impact sur le substrat ce qui conduit à des empilements de nanoparticules fortement poreux (de l’ordre de 50%). Des NPs de dioxyde de vanadium ont pu être synthétisées par recuit d’empilements de NPs de vanadium. Du fait de leur individualité, les NPs de VO2 présentent une température de transition plus faible (~50°C) et une largeur d’hystérésis plus importante (~10-30°C) qu’un film mince (température de transition d’environ 68°C et largeur d’hystérésis d’environ 3°C). En associant un film mince synthétisé par PLD à un empilement de NPs il est alors possible de combiner leurs propriétés et d’obtenir un matériau nanocomposite présentant une transition par palier. / The work presented in this thesis is focused on the development of an experimental setup for the synthesis of nanoparticles (NPs) by a physical route, based on the laser vaporization of a target and followed by the rapid quenching of the plasma plume. Combining such a NP source with conventional laser ablation makes possible to synthesize silver and vanadium NPs in stacks on substrates or embedded in different matrices synthesized by laser ablation. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) analysis revealed crystallized spherical NPs relatively monodisperse in size (~ 3 nm in diameter) depending on the residence time in the nucleation cavity. The synthesis of amorphous Al2O3 nanocomposites doped with metallic silver NPs of different sizes showed the influence of the size on the position and the width of the surface plasmon resonance (SPR) of the nanostructured material. The NPs keep their original shape during impact on the substrate, leading to highly porous NPs stacks (approximately 50%). Vanadium dioxide nanoparticles (VO2 NPs) have been synthesized by annealing vanadium NPs stacks. Due to their individual behaviour, VO2NPs exhibit lower transition temperature (~ 50°C) and larger hysteresis width (~ 10-30°C) than thin films (transition temperature around 68°C and hysteresis width around 3°C). By coupling a PLD thin film and a NPs stack, it is possible to combine their properties and obtain a nanostructured material having a step transition.
6

Carbon, magnesium implantation and proton irradiation on pulsed laser deposited thermochromic thin film of VO2

Mabakachaba, Boitumelo Mafalo January 2020 (has links)
>Magister Scientiae - MSc / When the spacecrafts orbit in space, it is subjected to significant thermal cycling variation. Thermal regulation of the spacecraft temperature is required to ensure a good operation of the small crafts such as CubeSats and the on-board equipment while minimizing the weight. Three methods employed for the Smart Radiator Devices (SRD) are (i) mechanical louvers, (ii) electrochromic coatings and (iii) thermochromic coatings (which is of interest in this study). Based on the characteristics of the thermochromic coatings, the passive smart radiator device is by far the most efficient option since there are no mechanical moving components and also no electric energy needed for the craft to operate.
7

Additively Manufactured Vanadium Dioxide (VO2) based Radio Frequency Switches and Reconfigurable Components

Yang, Shuai 08 1900 (has links)
In a wireless system, the frequency-reconfigurable RF components are highly desired because one such component can replace multiple RF components to reduce the size, cost, and weight. Typically, the reconfigurable RF components are realized using capacitive varactors, PIN diodes, or MEMS switches. Most of these RF switches are expensive, rigid, and need tedious soldering steps, which are not suitable for futuristic flexible and wearable applications. Therefore, there is a need to have a solution for low cost, flexible, and easy to integrate RF switches. All the above-mentioned issues can be alleviated if these switches can be simply printed at the place of interest. In this work, we have demonstrated vanadium dioxide (VO2) based RF switches that have been realized through additive manufacturing technologies (inkjet printing and screen printing), which dramatically brings the cost down to a few cents. Also, no soldering or additional attachment step is required as the switch can be simply printed on the RF component. The printed VO2 switches are configured in two types (shunt configuration and series configuration) where both types have been characterized with two activation mechanisms (thermal activation and electrical activation) up to 40 GHz. The measured insertion loss of 1-3 dB, isolation of 20-30 dB, and switching speed of 400 ns are comparable to other non-printed and expensive RF switches. As an application for the printed VO2 switches, a fully printed frequency reconfigurable filter has also been designed in this work. An open-ended dual-mode resonator with meandered loadings has been co-designed with the VO2 switches, resulting in a compact filter with decent insertion loss of 2.6 dB at both switchable frequency bands (4 GHz and 3.75 GHz). Moreover, the filter is flexible and highly immune to the bending effect, which is essential for wearable applications. Finally, a multi-parameter (switch thickness, width, length, temperature) model has been established using a customized artificial neural network (ANN) to achieve a faster simulation speed. The optimized model’s average error and correlation coefficient are only 0.0003 and 0.9905, respectively, which both indicate the model’s high accuracy.
8

Asymmetric Capacitor Based on Vanadium Dioxide/Graphene/Nickle and Carbon Nanotube Electrode

Xiao, Wanyao 10 June 2014 (has links)
No description available.
9

60 GHz 4-Bit Phase Shifter Design with VO<sub>2</sub> Switches

Johnson-Eusebio, Alejandro 24 August 2018 (has links)
No description available.
10

Vanadium Dioxide Based Radio Frequency Tunable Devices

Pan, Kuan-Chang January 2018 (has links)
No description available.

Page generated in 0.0359 seconds