• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Additively Manufactured Vanadium Dioxide (VO2) based Radio Frequency Switches and Reconfigurable Components

Yang, Shuai 08 1900 (has links)
In a wireless system, the frequency-reconfigurable RF components are highly desired because one such component can replace multiple RF components to reduce the size, cost, and weight. Typically, the reconfigurable RF components are realized using capacitive varactors, PIN diodes, or MEMS switches. Most of these RF switches are expensive, rigid, and need tedious soldering steps, which are not suitable for futuristic flexible and wearable applications. Therefore, there is a need to have a solution for low cost, flexible, and easy to integrate RF switches. All the above-mentioned issues can be alleviated if these switches can be simply printed at the place of interest. In this work, we have demonstrated vanadium dioxide (VO2) based RF switches that have been realized through additive manufacturing technologies (inkjet printing and screen printing), which dramatically brings the cost down to a few cents. Also, no soldering or additional attachment step is required as the switch can be simply printed on the RF component. The printed VO2 switches are configured in two types (shunt configuration and series configuration) where both types have been characterized with two activation mechanisms (thermal activation and electrical activation) up to 40 GHz. The measured insertion loss of 1-3 dB, isolation of 20-30 dB, and switching speed of 400 ns are comparable to other non-printed and expensive RF switches. As an application for the printed VO2 switches, a fully printed frequency reconfigurable filter has also been designed in this work. An open-ended dual-mode resonator with meandered loadings has been co-designed with the VO2 switches, resulting in a compact filter with decent insertion loss of 2.6 dB at both switchable frequency bands (4 GHz and 3.75 GHz). Moreover, the filter is flexible and highly immune to the bending effect, which is essential for wearable applications. Finally, a multi-parameter (switch thickness, width, length, temperature) model has been established using a customized artificial neural network (ANN) to achieve a faster simulation speed. The optimized model’s average error and correlation coefficient are only 0.0003 and 0.9905, respectively, which both indicate the model’s high accuracy.
2

Reconfigurable Microstrip Bandpass Filters, Phase Shifters Using Piezoelectric Transducers, and Beam-scanning Leaky-wave Antennas

Kim, Chan Ho 2012 May 1900 (has links)
In modern wireless communication and radar systems, filters play an important role in getting a high-quality signal while rejecting spurious and neighboring unwanted signals. The filters with reconfigurable features, such as tunable bandwidths or switchable dual bands, also play a key part both in realizing the compact size of the system and in supporting multi-communication services. The Chapters II-IV of this dissertation show the studies of the filters for microwave communication. Bandpass filters realized in ring resonators with stepped impedance stubs are introduced. The effective locations of resonant frequencies and transmission zeros are analyzed, and harmonic suppression by interdigital-coupled feed lines is discussed. To vary mid-upper and mid-lower passband bandwidths separately, the characteristic impedances of the open-circuited stubs are changed. Simultaneous change of each width of the open-circuited stub results in variable passband bandwidths. Asymmetric stepped-impedance resonators are also used to develop independently controllable dual-band (2.4 and 5.2 GHz) bandpass filters. By extending feed lines, a transmission zero is created, which results in the suppression of the second resonance of 2.4-GHz resonators. To determine the precise transmission zeros, an external quality factor at feeders is fixed while extracting coupling coefficients between the resonators. Two kinds of feed lines, such as hook-type and spiral-type, are developed, and PIN diodes are controlled to achieve four states of switchable dual-band filters. Beam-scanning features of the antennas are very important in the radar systems. Phase shifters using piezoelectric transducers and dielectric leaky-wave antennas using metal strips are studied in the Chapters V-VII of this dissertation. Meandered microstrip lines are used to reduce the size of the phase shifters working up to 10 GHz, and reflection-type phase shifters using piezoelectric transducers are developed. A dielectric film with metal strips fed by an image line with a high dielectric constant is developed to obtain wide and symmetrical beam-steering angle. In short, many techniques are presented for realizing reconfigurable filters and large beam-scan features in this dissertation. The result of this work should have many applications in various wireless communication and radar systems.
3

CMOS analog spectrum processing techniques for cognitive radio applications

Park, Jongmin 13 November 2009 (has links)
The objective of the research is to develop analog spectrum processing techniques for cognitive radio (CR) applications in CMOS technology. CR systems aim to use the unoccupied spectrum allocations without any license when the primary users are not present. Therefore, the successful deployment of CR systems relies on their ability to accurately sense the spectrum usage status over a wide frequency range serving various wireless communication standards. Meanwhile, to maximize the utilization of the available spectrum segments, the bandwidth of the signal has to be highly flexible, so that even a small fraction of spectrum resources can be fully utilized by CR users. One of the key enabling technologies of variable bandwidth communication is a tunable baseband filter. In this research, a reconfigurable CR testbed system is presented as groundwork for the researches related with CR systems. With the feasibility study on the multi-resolution spectrum sensing (MRSS) functionality, a method for determining sensing threshold for MRSS functionality is presented, and a fully integrated MRSS receiver in CMOS technology is demonstrated. On the other hand, a reconfigurable CMOS analog baseband filter which can change its bandwidth, type and order with high resolution for CR applications is presented. In sum, an analog spectrum sensing method as well as a highly flexible analog baseband filter architecture is established and implemented in CMOS technology. Both designs are targeting the utilization of the analog signal processing capability with the aid of the digital circuits.
4

MEMS TUNABLE SI-BASED EVANESCENT-MODE CAVITY FILTERS: DESIGN, OPTIMIZATION AND IMPLEMENTATION

Zhengan Yang (5930441) 16 August 2019 (has links)
<div>The allocated frequency bands for the incoming fifth generation (5G) wireless communication technologies spread broadly from sub 6 GHz to K and potentially W bands. The evolution of the future generations toward higher frequency bands will continue and presents significant challenges in terms of excessive system complexity, production and maintenance costs. Reconfigurable radio architecture with frequency-tunable components is one of the most feasible and cost-effective solutions to meet such challenges. Among these technologies, evanescent-mode (EVA) cavity tunable resonator have demonstrated many of the needed features such as wide tunability, low loss and high linearity. Such a technology typically employs a movable membrane that controls the resonant frequency of a post-loaded cavity. </div><div><br></div><div>The first part of this work focuses on advancing such technology into the mm-wave frequency bands and beyond. Manufacturing tolerance and tuner performance are the two main limiting factors addressed here. This work develops a cost-effective micro-fabrication and package assembly flow which addresses the manufacturing related limitations. On the other hand, introducing micro-corrugated diaphragms and gold-vanadium co-sputtered thin film deposition technology, significantly reduces (4 times) the tuning voltage and enhances tuning stability (7 times). We demonstrate a tunable two-pole band-pass filter (BPF) prototype as the first EVA cavity tunable filter operating in the K-Ka band. </div><div><br></div><div>The second part of this work extensively discusses an optimal RF design flow based on the developed manufacturing technology. It considers all technology constrains and allows the actualization of a high Q transfer function with minimum bandwidth variation within an octave tuning range. Moreover, a new fully passive input/output feeding mechanism that facilitates impedance matching over the entire tuning range is presented. The devised RF methodology is validated through the design and testing of a two-resonator BPF. Measurements demonstrate a tuning range between 20-40 GHz, relative bandwidth of 1.9%-4.7%, and impedance matching over the entire tuning range which is upto 2 times better than previously reported state-of-the-art MEMS tunable filters of this type.</div><div><br></div><div>The third part of this work further advances the technology by proposing the first MEMS-based low-power bi-directional EVA tuning approach that employs both the main bias circuitry as well as a new corrective biasing technique that counteracts viscoelastic memory effects. The two key enabling technologies are extensively discussed: a) a new metal-oxide-metal (MOM) sealed cavity that maintains high quality without requiring complicated metal bonding; and b) a new electrostatic bi-directional MEMS tuner that implements the needed frequency tuning without lowering the resonator quality factor. </div><div><br></div><div>Furthermore, we explore important design and fabrication trade-offs regarding sensitivity to non-ideal effects (residual stress, fabrication imperfections). Measurement of the new prototype bi-directional design, prove that this technology readily corrects residual post-bias displacement of 0.1 um that shifts the frequency by over 1 GHz with less than 2.5 V. It takes over 100 seconds to recover this error in the uni-directional case. This correction does not adversely affect the filter performance.</div>

Page generated in 0.0503 seconds