Spelling suggestions: "subject:"cloud networks"" "subject:"aloud networks""
1 |
Resource utilization techniques in distributed networks with limited information / Utilisation et optimisation de ressources radio distribuées avec un retour d'information limitéHanif, Ahmed Farhan 07 May 2014 (has links)
Dans ce travail, notre contribution est double. Nous développons un cadre d’apprentissage stochastique distribué pour la recherche des équilibres de Nash dans le cas de fonctions de paiement dépendantes d’un état. La plupart des travaux existants supposent qu’une expression analytique de la récompense est disponible au niveau des noeuds. Nous considérons ici une hypothèse réaliste où les noeuds ont seulement une réalisation quantifiée de la récompense à chaque instant et développons un modèle stochastique d’apprentissage à temps discret utilisant une perturbation en sinus. Nous examinons la convergence de notre algorithme en temps discret pour une trajectoire limite définie par une équation différentielle ordinaire (ODE). Ensuite, nous effectuons une analyse de la stabilité et appliquons le schéma proposé dans un problème de commande de puissance générique dans les réseaux sans fil. Nous avons également élaboré un cadre de partage de ressources distribuées pour les réseaux –cloud– en nuage. Nous étudions la stabilité de l’évolution de l’équilibre de Nash en fonction du nombre d’utilisateurs. Dans ce scénario, nous considérons également le comportement des utilisateurs sociaux. Enfin nous avons également examiné un problème de satisfaction de la demande où chaque utilisateur a une demande propre à lui qui doit être satisfaite / As systems are becoming larger, it is becoming difficult to optimize them in a centralized manner due to insufficient backhaul connectivity and dynamical systems behavior. In this thesis, we tackle the above problem by developing a distributed strategic learning framework for seeking Nash equilibria under state dependent payoff functions. We develop a discrete time stochastic learning using sinus perturbation with the realistic assumption, that each node only has a numerical realization of the payoff at each time. We examine the convergence of our discrete time algorithm to a limiting trajectory defined by an ordinary differential equation (ODE). Finally, we conduct a stability analysis and apply the proposed scheme in a generic wireless networks. We also provide the application of these algorithms to real world resource utilization problems in wireless. Our proposed algorithm is applied to the following distributed optimization problems in wireless domain. Power control, beamforming and Bayesian density tracking in the interference channel. We also consider resource sharing problems in large scale networks (e.g. cloud networks) with a generalized fair payoff function. We formulate the problem as a strategic decision-making problem (i.e. a game). We examine the resource sharing game with finite and infinite number of players. Exploiting the aggregate structure of the payoff functions, we show that, the Nash equilibrium is not an evolutionarily stable strategy in the finite regime. Then, we introduce a myopic mean-field response where each player implements a mean-field-taking strategy. We show that such a mean-field-taking strategy is evolutionarily stable in both finite and infinite regime. We provide closed form expression of the optimal pricing that gives an efficient resource sharing policy. As the number of active players grows without bound, we show that the equilibrium strategy converges to a mean-field equilibrium and the optimal prices for resources converge to the optimal price of the mean-field game. Then, we address the demand satisfaction problem for which a necessary and sufficiency condition for satisfactory solutions is provided
|
2 |
Performance evaluation of security mechanisms in Cloud NetworksKannan, Anand January 2012 (has links)
Infrastructure as a Service (IaaS) is a cloud service provisioning model which largely focuses on data centre provisioning of computing and storage facilities. The networking aspects of IaaS beyond the data centre are a limiting factor preventing communication services that are sensitive to network characteristics from adopting this approach. Cloud networking is a new technology which integrates network provisioning with the existing cloud service provisioning models thereby completing the cloud computing picture by addressing the networking aspects. In cloud networking, shared network resources are virtualized, and provisioned to customers and end-users on-demand in an elastic fashion. This technology allows various kinds of optimization, e.g., reducing latency and network load. Further, this allows service providers to provision network performance guarantees as a part of their service offering. However, this new approach introduces new security challenges. Many of these security challenges are addressed in the CloNe security architecture. This thesis presents a set of potential techniques for securing different resource in a cloud network environment which are not addressed in the existing CloNe security architecture. The thesis begins with a holistic view of the Cloud networking, as described in the Scalable and Adaptive Internet Solutions (SAIL) project, along with its proposed architecture and security goals. This is followed by an overview of the problems that need to be solved and some of the different methods that can be applied to solve parts of the overall problem, specifically a comprehensive, tightly integrated, and multi-level security architecture, a key management algorithm to support the access control mechanism, and an intrusion detection mechanism. For each method or set of methods, the respective state of the art is presented. Additionally, experiments to understand the performance of these mechanisms are evaluated on a simple cloud network test bed. The proposed key management scheme uses a hierarchical key management approach that provides fast and secure key update when member join and member leave operations are carried out. Experiments show that the proposed key management scheme enhances the security and increases the availability and integrity. A newly proposed genetic algorithm based feature selection technique has been employed for effective feature selection. Fuzzy SVM has been used on the data set for effective classification. Experiments have shown that the proposed genetic based feature selection algorithm reduces the number of features and hence decreases the classification time, while improving detection accuracy of the fuzzy SVM classifier by minimizing the conflicting rules that may confuse the classifier. The main advantages of this intrusion detection system are the reduction in false positives and increased security. / Infrastructure as a Service (IaaS) är en Cloudtjänstmodell som huvudsakligen är inriktat på att tillhandahålla ett datacenter för behandling och lagring av data. Nätverksaspekterna av en cloudbaserad infrastruktur som en tjänst utanför datacentret utgör en begränsande faktor som förhindrar känsliga kommunikationstjänster från att anamma denna teknik. Cloudnätverk är en ny teknik som integrerar nätverkstillgång med befintliga cloudtjänstmodeller och därmed fullbordar föreställningen av cloud data genom att ta itu med nätverkaspekten. I cloudnätverk virtualiseras delade nätverksresurser, de avsätts till kunder och slutanvändare vid efterfrågan på ett flexibelt sätt. Denna teknik tillåter olika typer av möjligheter, t.ex. att minska latens och belastningen på nätet. Vidare ger detta tjänsteleverantörer ett sätt att tillhandahålla garantier för nätverksprestandan som en del av deras tjänsteutbud. Men denna nya strategi introducerar nya säkerhetsutmaningar, exempelvis VM migration genom offentligt nätverk. Många av dessa säkerhetsutmaningar behandlas i CloNe’s Security Architecture. Denna rapport presenterar en rad av potentiella tekniker för att säkra olika resurser i en cloudbaserad nätverksmiljö som inte behandlas i den redan existerande CloNe Security Architecture. Rapporten inleds med en helhetssyn på cloudbaserad nätverk som beskrivs i Scalable and Adaptive Internet Solutions (SAIL)-projektet, tillsammans med dess föreslagna arkitektur och säkerhetsmål. Detta följs av en översikt över de problem som måste lösas och några av de olika metoder som kan tillämpas för att lösa delar av det övergripande problemet. Speciellt behandlas en omfattande och tätt integrerad multi-säkerhetsarkitektur, en nyckelhanteringsalgoritm som stödjer mekanismens åtkomstkontroll och en mekanism för intrångsdetektering. För varje metod eller för varje uppsättning av metoder, presenteras ståndpunkten för respektive teknik. Dessutom har experimenten för att förstå prestandan av dessa mekanismer utvärderats på testbädd av ett enkelt cloudnätverk. Den föreslagna nyckelhantering system använder en hierarkisk nyckelhantering strategi som ger snabb och säker viktig uppdatering när medlemmar ansluta sig till och medlemmarna lämnar utförs. Försöksresultat visar att den föreslagna nyckelhantering system ökar säkerheten och ökar tillgänglighet och integritet. En nyligen föreslagna genetisk algoritm baserad funktion valet teknik har använts för effektiv funktion val. Fuzzy SVM har använts på de uppgifter som för effektiv klassificering. Försök har visat att den föreslagna genetiska baserad funktion selekteringsalgoritmen minskar antalet funktioner och därmed minskar klassificering tiden, och samtidigt förbättra upptäckt noggrannhet fuzzy SVM klassificeraren genom att minimera de motstående regler som kan förvirra klassificeraren. De främsta fördelarna med detta intrångsdetekteringssystem är den minskning av falska positiva och ökad säkerhet.
|
3 |
A new Linux based TCP congestion control mechanism for long distance high bandwidth sustainable smart citiesMudassar, A., Asri, N.M., Usman, A., Amjad, K., Ghafir, Ibrahim, Arioua, M. 24 January 2020 (has links)
No / People, systems, and things in the cities generate large amount of data which is considered to be the most
scalable asset of any smart city. Linux users are rapidly increased in last few years, and many large multinational
organizations are deploying long distance high bandwidth (LDHB) cloud networks for centralizing the data from
various smart cities on a central location. TCP is responsible for reliable communication of data in these cloud
networks. For reliability communication among various smart cities, a number of TCP congestion control mechanisms have been developed in the past. TCP Compound, TCP Fusion, and TCP CUBIC are the default TCP
congestion control mechanisms for Microsoft Windows, Sun Solaris, and Linux operating systems respectively.
The response function of TCP CUBIC is higher than the response function of Standard TCP, which is a trademark
congestion control mechanism. As a result, TCP CUBIC does not behave friendly with Standard TCP in LDHB
cloud networks. The Congestion Window (cwnd) reduction and growth of TCP CUBIC is very aggressive, which
causes high packet loss rate and unfair share of available link bandwidth among competing flows from various
smart cities. The aim of this research is to design a new TCP congestion control mechanism for Linux operating
system to achieve maximum performance in LDHB cloud networks being used by smart cities. In this paper,
congestion control module for slow start (CCM-SS) is designed by increasing the lower boundary limit of cwnd
size in slow start phase of communication. Congestion control module for loss event (CCM-LE) is designed by
increasing the cwnd reduction rate at each packet loss event and finally Advance Response Function for TCP
CUBIC (ARFC) is proposed to design a new congestion control mechanism for Linux operating system. NS-2 is
used to compare the performance of TCP CUBIC* with TCP CUBIC in short distance high bandwidth (SDHB) and
long distance high bandwidth (LDHB) cloud networks. Results show that TCP CUBIC* has outperformed in LDHB
networks, at least by a factor of 18% as compared to TCP CUBIC.
|
Page generated in 0.057 seconds