• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extending the Kubernetes operator Kubegres to handle database restoration from dump files

Bemm, Rickard January 2023 (has links)
The use of cloud-native technologies has grown in popularity in recent years. With its ability to take advantage of the full benefits of cloud computing, cloud-native architecture has become a hot topic among developers and IT professionals. It refers to building and running applications using cloud services and architectures, including containerization, microservices, and automation tools such as Kubernetes to enable fast and continuous delivery of software applications. In Kubernetes, the desired state of a resource is described declaratively and then handles the details of how to get there. Databases are notoriously hard to deploy in such environments, and the Kubernetes operator pattern extends the resources it manages and how to get to the desired state, called reconcile function. Operators exist to manage PostgreSQL databases with backup and restore functionality, and some require a license to be used. Kubegres is a free-to-use open-source operator, but it lacks restore functionality. This thesis aims to extend the Kubegres operator to support database restoration using dump files. It includes how to create the restore process in Kubernetes, what modifications must be done to the current architecture, and how to make the reconcile function robust and self-healing yet customizable to fit many different needs. Research has been done to explore the design of other operators that already support database restoration. It inspired the design of the resource definition and the restoration process. A new resource definition was added to define the desired state of the database restoration and a new reconcile function to define how to act on it. The state is repeatedly created each time the reconcile function is triggered. During the restoration, a new database is always the target, and once completed, the resources to restore it are deleted, and only the PostgreSQL database is left. The performance of the modified operator impact compared to the original operator was measured to evaluate the operator. The tests consisted of operations both versions of the operator supported, including PostgreSQL database creation, cluster scaling, and changing resource limits. The two collected metrics, CPU- and memory usage, increased by 0.058-0.4 mvCPU (12-33%) and 8.2 MB (29%), respectively. A qualitative evaluation of the operator using qualities such as robustness, self-healing, customizability, and correctness showed that the design fulfils most of the qualities.
2

Scaling cloud-native Apache Spark on Kubernetes for workloads in external storages

Mrowczynski, Piotr January 2018 (has links)
CERN Scalable Analytics Section currently offers shared YARN clusters to its users as monitoring, security and experiment operations. YARN clusters with data in HDFS are difficult to provision, complex to manage and resize. This imposes new data and operational challenges to satisfy future physics data processing requirements. As of 2018, there were over 250 PB of physics data stored in CERN’s mass storage called EOS. Hadoop-XRootD Connector allows to read over network data stored in CERN EOS. CERN’s on-premise private cloud based on OpenStack allows to provision on-demand compute resources. Emergence of technologies as Containers-as-a-Service in Openstack Magnum and support for Kubernetes as native resource scheduler for Apache Spark, give opportunity to increase workflow reproducability on different compute infrastructures with use of containers, reduce operational effort of maintaining computing cluster and increase resource utilization via cloud elastic resource provisioning. This trades-off the operational features with datalocality known from traditional systems as Spark/YARN with data in HDFS.In the proposed architecture of cloud-managed Spark/Kubernetes with data stored in external storage systems as EOS, Ceph S3 or Kafka, physicists and other CERN communities can on-demand spawn and resize Spark/Kubernetes cluster, having fine-grained control of Spark Applications. This work focuses on Kubernetes CRD Operator for idiomatically defining and running Apache Spark applications on Kubernetes, with automated scheduling and on-failure resubmission of long-running applications. Spark Operator was introduced with design principle to allow Spark on Kubernetes to be easy to deploy, scale and maintain with similar usability of Spark/YARN.The analysis of concerns related to non-cluster local persistent storage and memory handling has been performed. The architecture scalability has been evaluated on the use case of sustained workload as physics data reduction, with files in ROOT format being stored in CERN mass-storage called EOS. The series of microbenchmarks has been performed to evaluate the architecture properties compared to state-of-the-art Spark/YARN cluster at CERN. Finally, Spark on Kubernetes workload use-cases have been classified, and possible bottlenecks and requirements identified. / CERN Scalable Analytics Section erbjuder för närvarande delade YARN-kluster till sina användare och för övervakning, säkerhet, experimentoperationer, samt till andra grupper som är intresserade av att bearbeta data med hjälp av Big Data-tekniker. Dock är YARNkluster med data i HDFS svåra att tillhandahålla, samt komplexa att hantera och ändra storlek på. Detta innebär nya data och operativa utmaningar för att uppfylla krav på dataprocessering för petabyte-skalning av fysikdata.Från och med 2018 fanns över 250 PB fysikdata lagrade i CERNs masslagring, kallad EOS. CERNs privata moln, baserat på OpenStack, gör det möjligt att tillhandahålla beräkningsresurser på begäran. Uppkomsten av teknik som Containers-as-a-Service i Openstack Magnum och stöd för Kubernetes som inbyggd resursschemaläggare för Apache Spark, ger möjlighet att öka arbetsflödesreproducerbarheten på olika databaser med användning av containers, minska operativa ansträngningar för att upprätthålla datakluster, öka resursutnyttjande via elasiska resurser, samt tillhandahålla delning av resurser mellan olika typer av arbetsbelastningar med kvoter och namnrymder.I den föreslagna arkitekturen av molnstyrda Spark / Kubernetes med data lagrade i externa lagringssystem som EOS, Ceph S3 eller Kafka, kan fysiker och andra CERN-samhällen på begäran skapa och ändra storlek på Spark / Kubernetes-klustrer med finkorrigerad kontroll över Spark Applikationer. Detta arbete fokuserar på Kubernetes CRD Operator för idiomatiskt definierande och körning av Apache Spark-applikationer på Kubernetes, med automatiserad schemaläggning och felåterkoppling av långvariga applikationer. Spark Operator introducerades med designprincipen att tillåta Spark över Kubernetes att vara enkel att distribuera, skala och underhålla. Analys av problem relaterade till icke-lokal kluster persistent lagring och minneshantering har utförts. Arkitekturen har utvärderats med användning av fysikdatareduktion, med filer i ROOT-format som lagras i CERNs masslagringsystem som kallas EOS. En serie av mikrobenchmarks har utförts för att utvärdera arkitekturegenskaperna såsom prestanda jämfört med toppmoderna Spark / YARN-kluster vid CERN, och skalbarhet för långvariga dataprocesseringsjobb.

Page generated in 0.0577 seconds