• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Software rejuvenation in cluster computing systems with dependency between nodes

Yang, M., Min, Geyong, Yang, W., Li, Z. 17 March 2014 (has links)
No / Software rejuvenation is a preventive and proactive fault management technique that is particularly useful for counteracting the phenomenon of software aging, aimed at cleaning up the system internal state to prevent the occurrence of future failure. The increasing interest in combing software rejuvenation with cluster systems has given rise to a prolific research activity in recent years. However, so far there have been few reports on the dependency between nodes in cluster systems when software rejuvenation is applied. This paper investigates the software rejuvenation policy for cluster computing systems with dependency between nodes, and reconstructs an stochastic reward net model of the software rejuvenation in such cluster systems. Simulation experiments and results reveal that the software rejuvenation strategy can decrease the failure rate and increase the availability of the cluster system. It also shows that the dependency between nodes affects software rejuvenation policy. Based on the theoretic analysis of the software rejuvenation model, a prototype is implemented on the Smart Platform cluster computing system. Performance measurement is carried out on this prototype, and experimental results reveal that software rejuvenation can effectively prevent systems from entering into disabled states, and thereby improving the ability of software fault-tolerance and the availability of cluster computing systems. / National Natural Science Foundation of China under the grant No. 60872044, 71133006, and Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China.
2

Performance analysis and improvement of InfiniBand networks : modelling and effective Quality-of-Service mechanisms for interconnection networks in cluster computing systems

Yan, Shihang January 2012 (has links)
The InfiniBand Architecture (IBA) network has been proposed as a new industrial standard with high-bandwidth and low-latency suitable for constructing high-performance interconnected cluster computing systems. This architecture replaces the traditional bus-based interconnection with a switch-based network for the server Input-Output (I/O) and inter-processor communications. The efficient Quality-of-Service (QoS) mechanism is fundamental to ensure the import at QoS metrics, such as maximum throughput and minimum latency, leaving aside other aspects like guarantee to reduce the delay, blocking probability, and mean queue length, etc. Performance modelling and analysis has been and continues to be of great theoretical and practical importance in the design and development of communication networks. This thesis aims to investigate efficient and cost-effective QoS mechanisms for performance analysis and improvement of InfiniBand networks in cluster-based computing systems. Firstly, a rate-based source-response link-by-link admission and congestion control function with improved Explicit Congestion Notification (ECN) packet marking scheme is developed. This function adopts the rate control to reduce congestion of multiple-class traffic. Secondly, a credit-based flow control scheme is presented to reduce the mean queue length, throughput and response time of the system. In order to evaluate the performance of this scheme, a new queueing network model is developed. Theoretical analysis and simulation experiments show that these two schemes are quite effective and suitable for InfiniBand networks. Finally, to obtain a thorough and deep understanding of the performance attributes of InfiniBand Architecture network, two efficient threshold function flow control mechanisms are proposed to enhance the QoS of InfiniBand networks; one is Entry Threshold that sets the threshold for each entry in the arbitration table, and other is Arrival Job Threshold that sets the threshold based on the number of jobs in each Virtual Lane. Furthermore, the principle of Maximum Entropy is adopted to analyse these two new mechanisms with the Generalized Exponential (GE)-Type distribution for modelling the inter-arrival times and service times of the input traffic. Extensive simulation experiments are conducted to validate the accuracy of the analytical models.
3

Performance analysis and improvement of InfiniBand networks. Modelling and effective Quality-of-Service mechanisms for interconnection networks in cluster computing systems.

Yan, Shihang January 2012 (has links)
The InfiniBand Architecture (IBA) network has been proposed as a new industrial standard with high-bandwidth and low-latency suitable for constructing high-performance interconnected cluster computing systems. This architecture replaces the traditional bus-based interconnection with a switch-based network for the server Input-Output (I/O) and inter-processor communications. The efficient Quality-of-Service (QoS) mechanism is fundamental to ensure the import at QoS metrics, such as maximum throughput and minimum latency, leaving aside other aspects like guarantee to reduce the delay, blocking probability, and mean queue length, etc. Performance modelling and analysis has been and continues to be of great theoretical and practical importance in the design and development of communication networks. This thesis aims to investigate efficient and cost-effective QoS mechanisms for performance analysis and improvement of InfiniBand networks in cluster-based computing systems. Firstly, a rate-based source-response link-by-link admission and congestion control function with improved Explicit Congestion Notification (ECN) packet marking scheme is developed. This function adopts the rate control to reduce congestion of multiple-class traffic. Secondly, a credit-based flow control scheme is presented to reduce the mean queue length, throughput and response time of the system. In order to evaluate the performance of this scheme, a new queueing network model is developed. Theoretical analysis and simulation experiments show that these two schemes are quite effective and suitable for InfiniBand networks. Finally, to obtain a thorough and deep understanding of the performance attributes of InfiniBand Architecture network, two efficient threshold function flow control mechanisms are proposed to enhance the QoS of InfiniBand networks; one is Entry Threshold that sets the threshold for each entry in the arbitration table, and other is Arrival Job Threshold that sets the threshold based on the number of jobs in each Virtual Lane. Furthermore, the principle of Maximum Entropy is adopted to analyse these two new mechanisms with the Generalized Exponential (GE)-Type distribution for modelling the inter-arrival times and service times of the input traffic. Extensive simulation experiments are conducted to validate the accuracy of the analytical models.

Page generated in 0.0829 seconds