Spelling suggestions: "subject:"coactivateur"" "subject:"activateur""
1 |
Identification et caractérisation de nouveaux co-régulateurs des récepteurs des hormones thyroïdiennesPoirier, Marie-Belle January 2007 (has links)
Les hormones thyroïdiennes (HTs) sont impliquées dans un large éventail d'événements physiologiques dont le développement neuronal, la croissance et le métabolisme énergétique.Les effets des HTs sont exercés par l'action de leurs récepteurs, les TRs, membres de la superfamille des récepteurs nucléaires (NRs).Les TRs sont des facteurs de transcription qui régulent le niveau d'expression des gènes cibles des HTs. Dépendamment du type de l'élément de réponse (TRE) localisé dans la région promotrice des gènes ils stimulent ou inhibent l'expression des gènes codant pour des protéines. L'activité transcriptionnelle des TRs est contrôlée par plusieurs co-régulateurs et les HTs. À la suite d'un criblage double-hybride chez la levure nous avons identifié plusieurs nouveaux partenaires des TRs dont; le general receptor for phosphoinositides-1 (GRP1) et Ran binding protein in microtubule (RanBPM). GRP1 interagit avec le domaine de liaison à l'ADN (DBD) des TRs qui est responsable de la liaison des TRs. L'interaction entre GRP1 et les TRs n'est pas modifiée par les HTs. De plus, nous avons démontré que GRP1 était présent dans les complexes formés par les TRs au niveau des compartiments cytoplasmique et nucléaire. Des essais transcriptionnels, en utilisant le gène rapporteur de la luciférase, ont montré que la surexpression de GRP1 inhibe l'activité transcriptionelle des TRs de 45 à 60% tant au niveau de TREs positifs (TRETK, LYSx2 et DR+4) que de TREs négatifs (les promoteurs humains de la thyréolibérine (TRH) et la thyréostimuline-alpha (TSH[alpha])). Dans le but de comprendre le mécanisme d'action de GRP1, nous avons étudié son effet sur la formation des complexes homodimères (TR/TR) et hétérodimères (TR/RXR) au niveau de TREs. Ces études ont démontré que GRP1 diminue de 25-35% et 45-50% la liaison à l'ADN des complexes TR/TR et TR/RXR respectivement et ce, sans influencer la composition des dimères. De plus, une dose croissante d'oligo double-brins de TRE inhibe l'interaction entre GRP1 et les TRs (diminution de 75% par rapport au contrôle). Par la suite, nous avons démontré que GRP1 n'influence pas la formation des dimères TR/TR ou TR/RXR. GRP1 agit donc comme un compétiteur de la liaison aux TREs par les TRs via son interaction avec le DBD. Ce mécanisme d'action n'a jamais été identifié pour d'autres co-répresseurs des NRs. RanBPM est également un partenaire des TRs dont l'interaction n'est pas modifiée par le ligand. RanBPM possède une plus grande affinité pour les isoformes TR[bêta]. Le DBD constitue un point d'interaction important, mais qu'il existe également d'autres points d'interaction dans le TRs. L'interaction entre RanBPM et les TRs est présente dans des cellules non-transfectées. Des essais transcriptionnels ont démontré que RanBPM stimule jusqu'à 180% la transcription des TRs au niveau des pTREs (TRETK, DR+4) et jusqu'à 300% sur les nTREs (TRH, TSH[alpha]). Dans le but de découvrir par quel mécanisme RanBPM agit comme co-activateur, nous avons étudié la liaison de RanBPM avec des co-activateurs classiques. Ainsi, nous avons démontré que RanBPM interagit avec les steroid receptor coactivator-1 et -2 -3 (SRC-1-3) mais pas avec le CREB-binding protein murin (mCBP).Les essais transcriptionnels utilisant RanBPM de paire avec ces co-activateurs, démontrent que SRC-1 produit un effet synergique sur l'activité transcriptionelle des TRs et le mCBP produit un effet additif. Ce phénomène pourrait signifier que le mode d'action de RanBPM est relié à celui des co-activateurs de première vague, comme les SRCs. Par contre, le mode d'action de mCBP, qui fait partie de la deuxième vague de co-activateurs, ne serait pas associé à celui de RanBPM. L'implication des protéines co-régulatrices est essentielle à la régulation transcriptionnelle effectuée par les TRs, et les progrès futurs dans ce domaine dépendent de leur découverte et de la détermination de leur(s) fonction(s). GRP1 et RanBPM interagissent au niveau du DBD, un phénomène rare parmi les partenaires d'interaction des TRs. De plus, cette région présente le plus haut niveau d'homologie dans la superfamille des NRs, faisant de GRP1 et RanBPM des joueurs potentiels importants du système endocrinien.
|
2 |
Régulation de l’expression des gènes par le coactivateur transcriptionnel SAGA en réponse aux nutriments / Regulation of gene expression by transcriptional coactivator SAGA in response to nutrientsLaboucarié, Thomas 29 April 2016 (has links)
La régulation de l’expression des gènes joue un rôle fondamental dans la réponse et l’adaptation des cellules à leur environnement. L'expression des gènes peut être régulée à plusieurs étapes distinctes, mais un niveau de contrôle critique est l’initiation de la transcription. Celle-ci implique le recrutement séquentiel de nombreux régulateurs différents, dont les complexes co-activateurs. De nombreuses études ont démontré et caractérisé leurs fonctions dans la transcription. Cependant, il est moins bien compris comment les co-activateurs sont directement régulés par les conditions environnementales. Des travaux précédents de mon laboratoire de thèse ont montré, dans la levure fissipare Schizosaccharomyces pombe, que le complexe co-activateur SAGA contrôle l’expression des gènes en réponse aux nutriments et contribue ainsi à l’équilibre entre la prolifération cellulaire et la différenciation sexuelle. L’objectif de mon travail de thèse a été de comprendre comment le complexe SAGA répond à la disponibilité en nutriments et régule l’expression des gènes de différenciation. Pour cela, j’ai combiné des approches de génétique, de biochimie et de protéomique quantitative. Des analyses d’interactions génétiques m’ont permis de montrer que SAGA, par l’intermédiaire de sa sous-unité acétyltransférase Gcn5, contrôle l’équilibre entre prolifération et différenciation en aval des voies de signalisation TORC1 et TORC2. Puis, des études biochimiques ont établi que les voies de signalisation TORC1 et TORC2 contrôlent SAGA via la phosphorylation différentielle d’une sous-unité architecturale du complexe, nommée Taf12. En effet, lorsque les nutriments sont présents, TORC1 active la phosphatase PP2A, via la kinase Greatwall, pour déphosphoryler Taf12. Au contraire, la carence en nutriments active la voie de signalisation TORC2-AKT, qui permet la phosphorylation de Taf12, afin de moduler l’intensité de la réponse de différenciation. Nous avons également identifié d’autres sous-unités de SAGA qui sont différentiellement phosphorylées en fonction du niveau en nutriments et qui pourraient donc également contribuer à la régulation de SAGA. Notamment, nous avons observé que les sous-unités Ada3 et Sgf29, impliquées dans la régulation de l’activité de Gcn5, sont également phosphorylées dans les conditions carencées en nutriments. Enfin, j’ai observé que TORC2 et Gcn5 contrôlent la transition G2/M de façon synergique, suggérant que SAGA et les voies de signalisation des kinases TOR interagissent fonctionnellement dans le contrôle d’autres processus. Mon travail révèle que SAGA est une cible directe des voies de signalisation qui détectent les nutriments et établit un nouveau mécanisme par lequel TORC1 et TORC2 convergent pour contrôler l’expression génique et le destin cellulaire / The regulation of gene expression plays a fundamental role in the ability of cells to respond to external changes. One critical level of regulation is transcription, which is controlled by large complexes with many distinct activities. Little is known about how these activities integrate developmental or environmental signals to regulate transcription. We are using S. pombe as a model system to address this issue, in the context of cell fate control by nutrient availability. Previous work in the lab has established that, in this yeast, the SAGA co-activator complex controls whether cells proliferate or not in response to nutrients. Following up on these observations, we determined which nutrient-sensing signaling pathways regulate SAGA activities. A comprehensive genetic approach demonstrated that SAGA functions downstream of the TOR kinase-containing complexes, TORC1 and TORC2. In parallel, quantitative mass spectrometry analysis of the SAGA complex revealed that the Taf12 subunit is differentially phosphorylated, depending on nutrient levels. In agreement with our genetic analyses, Taf12 phosphorylation depends on the PP2A phosphatase, which we found is activated by TORC1 when nutrients are present. Conversely, upon nutrient starvation, TORC2 is activated allowing the AKT kinase to phosphorylate Taf12. We are now testing the in vivo roles of these modifications as well as their impact on SAGA functions at nutrient-regulated promoters. Altogether, our results contribute to a better understanding of the control of transcription by signal transduction pathways.
|
3 |
Structural study of the transcriptional co-activator SAGA / Etude structurale du coactivateur transcriptionel SAGA chez la levure Saccharomyces cerevisiaeDurand, Alexandre 29 April 2014 (has links)
Le complexe SAGA (Spt-Ada-Gcn5 acetyl transferase) est un co-activateur transcriptionel, conservé chez les eucaryotes, qui participent à la transcription d’environ 10% des gènes chez la levure, où il fait le lien entre les composants du complexe de pré-initiation, tel que la TATA-box Binding Protein (TBP) et des activateurs, et modifie les histones dans le contexte de la chromatine (acétylation et déubiquitination). Ces travaux de thèse ont permis de décrire l’architecture moléculaire du complexe observée par microscopie électronique. Nous avons pu (i) localiser le module de déubiquitination au sein du complexe entier et ainsi (ii) définir une zone d’interaction avec le nucléosome ; (iii) montrer la présence de deux sites d’interaction avec la protéine TBP situé au niveau d’une « pince »moléculaire ; (iv) observer un lien fonctionnel entre le module de déubiquitination, en particulier de la protéine Sgf73, et les conformations adoptées par cette pince. / The SAGA complex (Spt-Ada-Gcn5 acetyl transferase) is a transcriptional coactivator, highly conserved in eukaryotes, involved in the transcription of 10% of the genes in yeast, where it bridges the components of the pre-initiation complex such as the TATA-box Binding Protein (TBP) and activators, as well as modifies histones in the chromatin template (acetylation and deubiquitination). This work has revealed the molecular architecture of the complex observed by electron microscopy. We could (i) localize the deubiquitination module within the whole complex and thus (ii) define the interaction surface with the nucleosome; (iii) reveal the presence of two TBP-interacting surfaces localized at the tips of a molecular clamp; (iv) observe a functional link between the deubiquitination module, in particular the Sgf73 protein, and the conformation adopted by this clamp.
|
Page generated in 0.0361 seconds