1 |
An Experimental Study of Catalytic Effects on Reaction Kinetics and Producer Gas in Gasification of Coal-Biomass Blend Chars with SteamZhang, Ziyin January 2011 (has links)
The objective of this thesis is to experimentally investigate the performance of steam gasification of chars of pure coal (lignite, sub-bituminous), pure biomass (radiata pine, eucalyptus nitens) and their blends. The influences of gasification temperature, types of coal and biomass, coal-biomass blending ratio, alkali and alkaline earth metal (AAEM) in lignite, on specific gasification characteristics (producer gas composition and yield, char reactivity) were studied. In addition, synergistic effects in co-gasification of coal-biomass blend char were also investigated. This project is in accordance with objectives of the BISGAS Consortium.
In this study, experiments were performed in a bench-scale gasifier at gasification temperatures of 850°C, 900°C and 950°C, respectively. Two types of coals (lignite and sub-bituminous) and two kinds of biomass (radiata pine and eucalyptus nitens) from New Zealand were selected as sample fuels. From these raw materials, the chars with coal-to-biomass blending ratios of 0:100 (pure coal), 20:80, 50:50, 80:20 and 100:0 (pure biomass), which were derived through the devolatilization at temperature of 900°C for 7 minutes, were gasified with steam as gasification agent. During the gasification tests, the producer gas composition and gas production were continuously analysed using a Micro gas chromatograph. When the gas production was undetectable, the gasification process was assumed to be completed and the gasification time was recorded. The gasification producer gas consisted of three main gas components: hydrogen (H2), carbon monoxide (CO) and carbon dioxide (CO2).
The results from gasification of chars of individual solid fuels (coal or biomass) confirmed that biomass char gasification was faster than coal char gasification. The influences of gasification temperatures were shown as: when gasification temperature increased, the H2 yield increased in coal char gasification but decreased in biomass char gasification. In the meantime, CO yields increased while CO2 yields decreased in both coal char and biomass char gasification. In addition, the char reactivity of all the pure fuel samples increased with elevated gasification temperatures.
The results from co-gasification of coal-biomass blend char exhibited that the syngas production rate, which is defined as the total gas production divided by the gasification completion time, was enhanced by an increase in gasification temperatures as well as an increase in the biomass proportion in the blend. The AAEM species played a significant catalytic role in both gasification of pure coal chars and co-gasification of coal-biomass blend chars. The presence of AAEM increased the producer gas yield and enhanced the char reactivity.
The positive synergistic effects of the coal-biomass blending char on syngas production rate only existed in the co-gasification of lignite-eucalyptus nitens blend chars. The other blend chars showed either insignificant synergistic effects or negative effects on the syngas production rate.
|
2 |
Co-gasification of biomass with coal and oil sands coke in a drop tube furnaceGao, Chen 11 1900 (has links)
Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based on TGA experimental data, it was shown that the effect of the blending ratio of biomass to other fuels on the reactivity of the co-pyrolyzed chars is more pronounced on the chars prepared at lower temperature, due to the presence of synergetic effects originating from the interaction of the two fuels.
SEM images showed differences in shapes and particle size of char particles from biomass and coal/coke. These also show the agglomeration of coal and coke chars with biomass char particles at high temperatures. The agglomeration may be the reason for the non-additive behavior of the blends. BET analysis showed increase in the surface area with an increasing temperature for biomass and coal, but the trend for coke was inversely related to the temperature. / Chemical Engineering
|
3 |
Co-gasification of biomass with coal and oil sands coke in a drop tube furnaceGao, Chen Unknown Date
No description available.
|
4 |
Cogasification of coal and biomass : impact on condensate and syngas productionAboyade, Akinwale Olufemi 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Gasification provides a proven alternative to the dependence on petroleum for the
production of high value products such as liquid fuels and chemicals. Syngas, the
main product from gasification can be converted to fuels and chemicals via a number
of possible synthesis processes. Coal and natural gas are currently the main
feedstock used for syngas production. In South Africa (SA), Sasol operates the largest
commercial coal-to-liquids conversion process in the world, based on updraft fixed
bed gasification of low grade coal to syngas. Co-utilizing alternative and more
sustainable feedstock (such as biomass and wastes) with coal in existing coal-based
plants offers a realistic approach to reducing the costs and risks associated with
setting up dedicated biomass conversion plants.
An experimental and modelling investigation was performed to assess the impacts of
co-gasifying two of the most commonly available agricultural wastes in SA
(sugarcane bagasse and corn residue) with typical low grade SA coals, on the main
products of updraft fixed bed gasification, i.e. liquid condensates and syngas.
Condensates are produced in the pyrolysis section of the updraft gasifier, whereas
syngas is a result of residual char conversion. An experimental set-up that simulates
the pyrolysis section of the gasifier was employed to investigate the yield and
composition of devolatilized products at industrially relevant conditions of 26 bars
and 400-600°C. The results show that about 15 wt% of coal and 70 wt% of biomass
are devolatilized during the pyrolysis process. The biomass derived condensates
were determined to comprise of significantly higher quantities of oxygenates such as
organic acids, phenols, ketones, and alcohols, whereas coal derived hydrocarbon
condensates were dominated by polycyclic aromatic hydrocarbons, creosotes and
phenols. Results of investigation into the influence of coal-biomass feedstock mix
ratio on yields of products from pyrolysis show limited evidence of non-additive or
synergistic behaviour on the overall distribution of solid, liquid and gas yields. On the
other hand, in terms of the distribution of specific liquid phase hydrocarbons, there
was significant evidence in favour of non-additive pyrolysis behaviour, as indicated by the non-additive yield distribution of specific chemicals. Synergistic trends could
also be observed in the thermogravimetric (TGA) study of pyrolysis under kinetically
controlled non-isothermal conditions. Model free and model fitting kinetic analysis
of the TGA data revealed activation energies ranging between 94-212 kJ mol-1 for the
biomass fuels and 147-377 kJ mol-1 for coal. Synergistic interactions may be linked to
the increased presence of hydrogen in biomass fuels which partially saturates free
radicals formed during earlier stages of devolatilization, thereby preventing
secondary recombination reactions that would have produced chars, allowing for the
increased formation of volatile species instead.
Analysis of char obtained from the co-pyrolysis experiments revealed that the fixed
carbon and volatile content of the blended chars is is proportional to the percentage
of biomass and coal in the mixture. CO2 reactivity experiments on the chars showed
that the addition of biomass to coal did not impose any kinetic limitation on the
gasification of blended chars. The blended chars decomposed at approximately the
same rate as when coal was gasified alone, even at higher biomass concentrations in
the original feedstock blend. Based on these observations, a semi-empirical
equilibrium based simulation of syngas production for co-gasification of coalbiomass
blends at various mix ratios was developed using ASPEN Plus. The model
showed that H2/CO ratio was relatively unaffected by biomass addition to the coal
fuel mix, whereas syngas heating value and thermal efficiency were negatively
affected. Subsequent evaluation of the production cost of syngas at biomass inputs
ranging between 0-20 wt% of coal reflected the significant additional cost of pretreating
biomass (3.3% of total capital investment). This resulted in co-gasification
derived syngas production costs of ZAR146/tonne (ZAR12.6/GJ) at 80:20 coalbiomass
feedstock ratio, compared to a baseline (coal only) cost of ZAR130/tonne
(ZAR10.7/GJ). Sensitivity analysis that varied biomass costs from ZAR0 ZAR470
revealed that syngas production costs from co-gasification remained significantly
higher than baseline costs, even at low to zero prices of the biomass feedstock. This
remained the case even after taking account of a carbon tax of up to ZAR117/tCO2.
However, for range of carbon tax values suggested by the SA treasury (ZAR70 tCO2 to ZAR200 tCO2), the avoided carbon tax due to co-feeding biomass can offset between
40-96% of the specific retrofitting cost at 80:20 coal-biomass feedstock mass ratio.
In summary, this dissertation has showed that in addition to the widely recognized
problems of ash fouling and sintering, co-feeding of biomass in existing coal based
updraft gasification plants poses some challenges in terms of impacts on
condensates and syngas quality, and production costs. Further research is required
to investigate the potential in ameliorating some of these impacts by developing
new high value product streams (such as acetic acid) from the significant fraction of
condensates derived from biomass. / AFRIKAANSE OPSOMMING: Vergassing bied 'n beproefde alternatief vir die afhanklikheid van petroleum vir die
produksie van hoë waarde produkte soos vloeibare brandstof en chemikalieë.
Sintese gas, die belangrikste produk van vergassing, kan omgeskakel word na
brandstof en chemikalieë deur 'n aantal moontlike sintese prosesse. Steenkool en
aardgas is tans die belangrikste grondstowwe wat gebruik word vir sintese gas
produksie. In Suid-Afrika (SA) bedryf Sasol die grootste kommersiële steenkool-totvloeistof
omskakelingsproses in die wêreld, gebaseer op stygstroom vastebed
vergassing van laegraadse steenkool na sintese gas. Die gebruik van alternatiewe en
meer volhoubare grondstowwe (soos biomassa en afval) saam met steenkool in die
bestaande steenkool-gebaseerde aanlegte bied 'n realistiese benadering tot die
vermindering van die koste en risiko's wat verband hou met die oprigting van
toegewyde biomassa omskakelingsaanlegte.
'n Eksperimentele en modelleringsondersoek is uitgevoer om die impak van
gesamentlike vergassing van twee van die mees algemeen beskikbare landbouafvalprodukte
in Suid-Afrika (suikerriet bagasse en mieliereste) met tipiese
laegraadse SA steenkool op die vernaamste produkte van stygstroom vastebed
vergassing, dws vloeistof kondensate en sintese gas, te evalueer. Kondensate word
geproduseer in die piroliese gedeelte van die stygstroomvergasser, terwyl sintese
gas 'n resultaat is van die omskakeling van oorblywende houtskool. 'n
Eksperimentele opstelling wat die piroliese gedeelte van die vergasser simuleer is
gebruik om die opbrengs en die samestelling van produkte waarvan die vlugtige
komponente verwyder is by industrie relevante toestande van 26 bar en 400-600°C
te ondersoek. Die resultate toon dat ongeveer 15% (massabasis) van die steenkool
en 70% (massabasis) van die biomassa verlore gaan aan vlugtige komponente tydens
die piroliese proses. Daar is vasgestel dat die kondensate afkomstig van biomassa uit
aansienlik hoër hoeveelhede suurstofryke verbindings soos organiese sure, fenole,
ketone, en alkohole bestaan, terwyl koolwaterstofkondensate afkomstig uit
steenkool oorwegend bectaan uit polisikliese aromatise verbindings, kreosote en fenole. Die resultate van die ondersoek na die invloed van die verhouding van
steenkool tot biomassa grondstof op piroliese opbrengste toon beperkte bewyse van
nie-toevoegende of sinergistiese gedrag op die algehele verspreiding van soliede,
vloeistof en gas opbrengste. Aan die ander kant, in terme van die verspreiding van
spesifieke vloeibare fase koolwaterstowwe, was daar beduidende bewyse ten gunste
van 'n sinergistiese piroliese gedrag. Sinergistiese tendense is ook waargeneem in die
termogravimetriese (TGA) studie van piroliese onder kineties beheerde nieisotermiese
toestande. Modelvrye en modelpassende kinetiese analise van die TGA
data het aan die lig gebring dat aktiveringsenergieë wissel tussen 94-212 kJ mol-1 vir
biomassa brandstof en 147-377 kJ mol-1 vir steenkool.
Ontleding van die houtskool verkry uit die gesamentlike piroliese eksperimente het
aan die lig gebring dat die onmiddellike kenmerke van die gemengde houtskool die
geweegde gemiddelde van die individuele waardes vir steenkool en biomassa
benader. CO2 reaktiwiteitseksperimente op die houtskool het getoon dat die
byvoeging van biomassa by steenkool nie enige kinetiese beperking op die
vergassing van gemengde houtskool plaas nie. Die gemengde houtskool ontbind
teen ongeveer dieselfde tempo as wanneer steenkool alleen vergas is, selfs teen
hoër biomassa konsentrasies in die oorspronklike grondstofmengsel. Op grond van
hierdie waarnemings is 'n semi-empiriese ewewig-gebaseerde simulasie van sintese
gas produksie vir gesamentlike vergassing van steenkool-biomassa-mengsels vir
verskeie mengverhoudings ontwikkel met behulp van Aspen Plus. Die model het
getoon dat die H2/CO verhouding relatief min geraak is deur biomassa by die
steenkool brandstofmengsel te voeg, terwyl sintese gas se verhittingswaarde en
termiese doeltreffendheid negatief geraak is. Daaropvolgende evaluering van die
produksiekoste van sintese gas vir biomassa insette wat wissel tussen 0-20%
(massabasis) van die hoeveelheid steenkool het die aansienlike addisionele koste van
die vooraf behandeling van biomassa (3.3% van die totale kapitale belegging) gereflekteer. Dit het gelei tot 'n produksiekoste van ZAR146/ton (ZAR12.6/GJ) vir sintese gas afkomstig uit gesamentlike-vergassing van 'n 80:20 steebkool-biomassa grondstof mengesl, in vergelyking met 'n basislyn (steenkool) koste van ZAR130/ton (ZAR10.7/GJ). Sensitiwiteitsanalise wat biomassa koste van ZAR0 - ZAR470 gevarieër
het, het aan die lig gebring dat sintese gas produksiekoste van gesamentlike
vergassing aansienlik hoër bly as die basislyn koste, selfs teen 'n lae of nul prys van
biomassa grondstof. Dit bly die geval selfs nadat koolstof belasting van tot
ZAR117/tCO2 in ag geneem is.
In opsomming het hierdie verhandeling getoon dat, bykomend tot die wyd-erkende
probleme van as besoedeling en sintering, die gesamentlike gebruik van biomassa in
bestaande steenkool stygstroom vergassingsaanlegte groot uitdagings inhou in
terme van die impak op die kwaliteit van kondensate en sintese gas, asook
produksiekoste. Verdere navorsing is nodig om die potensiaal te ondersoek vir die
verbetering van sommige van hierdie impakte deur die ontwikkeling van nuwe hoë
waarde produkstrome (soos asynsuur) uit die beduidende breukdeel van kondensate
wat verkry word uit biomassa.
|
5 |
Non-Catalytic Co-Gasification of Sub-Bituminous Coal and BiomassNyendu, Guevara Che 01 May 2015 (has links)
Fluidization characteristics and co-gasification of pulverized sub-bituminous coal, hybrid poplar wood, corn stover, switchgrass, and their mixtures were investigated. Co-gasification studies were performed over temperature range from 700°C to 900°C in different media (N2, CO2, steam) using a bubbling fluidized bed reactor.
In fluidization experiments, pressure drop (ΔP) observed for coal-biomass mixtures was higher than those of single coal and biomass bed materials in the complete fluidization regime. There was no systematic trend observed for minimum fluidization velocity (Umf) with increasing biomass content. However, porosity at minimum fluidization (εmf) increased with increasing biomass content. Channeling effects were observed in biomass bed materials and coal bed with 40 wt.% and 50 wt.% biomass content at low gas flowrates. The effect of coal pressure overshoot reduced with increasing biomass content.
Co-gasification of coal and corn stover mixtures showed minor interactions. Synergetic effects were observed with 10 wt.% corn stover. Coal mixed with corn stover formed agglomerates during co-gasification experiments and the effect was severe with increase in corn stover content and at 900°C. Syngas (H2 + CO) concentrations obtained using CO2 as cogasification medium were higher (~78 vol.% at 700°C, ~87 vol.% at 800°C, ~93 vol.% at 900°C) than those obtained with N2 medium (~60 vol.% at 700°C, ~65 vol.% at 800°C, ~75 vol.% at 900°C).
Experiments involving co-gasification of coal with poplar showed no synergetic effects. Experimental yields were identical to predicted yield. However, synergetic effects were observed on H2 production when steam was used as the co-gasification medium. Additionally, the presence of steam increased H2/CO ratio up to 2.5 with 10 wt.% hybrid poplar content. Overall, char and tar yields decreased with increasing temperature and increasing biomass content, which led to increase in product gas.
|
6 |
High-pressure pyrolysis and gasification of biomassNewalkar, Gautami 21 September 2015 (has links)
With the limited reserves of fossil fuels and the environmental problems associated with their use, the world is moving towards cleaner, renewable, and sustainable sources of energy. Biomass is a promising feedstock towards attaining this goal because it is abundant, renewable, and can be considered as a carbon neutral source of energy. Syngas can be further processed to produce liquid fuels, hydrogen, high value chemicals, or it can be converted to heat and power using turbines. Most of the downstream processing of syngas occurs at high pressures, which requires cost intensive gas compression. It has been considered to be techno-economically advantageous to generate pressurized syngas by performing high-pressure gasification.
Gasification utilizes high temperatures and an oxidizing gas to convert biomass to synthesis gas (syngas, a mixture of CO and H2). Most of the past studies on gasification used process conditions that did not simulate an industrial gasification operation. This work aims at understanding the chemical and physical transformations taking place during high-pressure biomass gasification at heating rates of practical significance. We have adopted an approach of breaking down the gasification process into two steps: 1) Pyrolysis or devolatalization (fast step), and 2) Char gasification (slow step). This approach allows us to understand pyrolysis and char gasification separately and also to study the effect of pyrolysis conditions on the char gasification kinetics. Alkali and alkaline earth metals in biomass are known to catalyze the gasification reaction. This potentially makes biomass feedstock a cheap source of catalyst during coal gasification. This work also explores catalytic interactions in biomass-coal blends during co-gasification of the mixed feeds. The results of this study can be divided into four parts: (a) pyrolysis of loblolly pine; (b) gasification of pine chars; (c) pyrolysis and gasification of switchgrass; (d) co-gasification of pine/switchgrass with lignite and bituminous coals.
|
7 |
Evaluation of the potential for co-gasification of black liquor and biofuel by-products : An experimental study of mixing and char reactivityHäggström, Gustav January 2015 (has links)
The increased use of fossil fuels during the last centuries has caused elevated levels of carbon dioxide in the atmosphere. There is significant evidence that this is the cause of global warming. To mitigate the global warming, measures has to be taken to use renewable fuels and make processes more efficient. Catalytic gasification and downstream upgrading of synthesis gas is a promising technology for biofuel production, where previous research in black liquor gasification is currently expanding into a wider fuel feedstock. This work focuses on co-gasification of black liquor and by-products from other biofuel production technologies. The interesting by-products were crude glycerol from biodiesel production and spruce fermentation residue from ethanol production. The main goals were to study if the fuels can mix homogeneously and study the char reactivity. CO2 char gasification for mixtures of black liquor and glycerol or fermentation residue respectively was studied using thermogravimetric analysis (TGA) for four temperatures between 750°C and 900°C. The results show that glycerol can be mixed in all proportions with black liquor and indicate that the char reactivity is unchanged. The sustained char reactivity for blends is attributed to the volatility of glycerol. The fermentation residue does not produce a homogeneous mixture with black liquor and the char is less reactive. More studies should be performed to further elucidate the validity of the results.
|
8 |
Hydrodynamic and gasification behavior of coal and biomass fluidized beds and their mixturesEstejab, Bahareh 29 March 2016 (has links)
In this study, efforts ensued to increase our knowledge of fluidization and gasification behavior of Geldart A particles using CFD. An extensive Eulerian-Eulerian numerical study was executed and simulations were compared and validated with experiments conducted at Utah State University. In order to improve numerical predictions using an Eulerian-Eulerian model, drag models were assessed to determine if they were suitable for fine particles classified as Geldart A. The results proved that if static regions of mass in fluidized beds are neglected, most drag models work well with Geldart A particles. The most reliable drag model for both single and binary mixtures was proved to be the Gidaspow-blend model. In order to capture the overshoot of pressure in homogeneous fluidization regions, a new modeling technique was proposed that modified the definition of the critical velocity in the Ergun correlation. The new modeling technique showed promising results for predicting fluidization behavior of fine particles. The fluidization behavior of three different mixtures of coal and poplar wood were studied. Although results indicated good mixing characteristics for all mixtures, there was a tendency for better mixing with higher percentages of poplar wood.
In this study, efforts continued to model co-gasification of coal and biomass. Comparing the coal gasification of large (Geldart B) and fine (Geldart A) particles showed that using finer particles had a pronounced effect on gas yields where CO mass fraction increased, although H2 and CH4 mass fraction slightly decreased. The gas yields of coal gasification with fine particles were also compared using three different gasification agents. Modeling the co-gasification of coal-switchgrass of both fine particles of Geldart A and larger particles of Geldart B showed that there is not a synergetic effect in terms of gas yields of H2 and CH4. The gas yields of CO, however, showed a significant increase during co-gasification. The effects of gasification temperature on gas yields were also investigated. / Ph. D.
|
9 |
Entrained-Flow Gasification of Black Liquor and Pyrolysis Oil : Experimental and Equilibrium Modelling Studies of Catalytic Co-gasificationJafri, Yawer January 2016 (has links)
The last couple of decades have seen entrained-flow gasification of black liquor (BL) undergo an incremental process of technical development as an alternative to combustion in a recovery boiler. The ability of the technology to combine chemical recovery with the production of clean syngas renders it a promising candidate for the transformation of chemical pulp mills into integrated forest biorefineries. However, techno-economic assessments have shown that blending BL with the more easily transportable pyrolysis oil (PO) can not only increase the system efficiency for methanol production but remove a significant roadblock to development by partially decoupling production capacity from limitations on black liquor availability. The verification and study of catalytic co-gasification in an industrially-relative scale can yield both scientifically interesting and practically useful results, yet it is a costly and time-consuming enterprise. The expense and time involved can be significantly reduced by performing thermodynamic equilibrium calculations using a model that has been validated with relevant experimental data. The main objective of this thesis was to study, understand, quantify and compare the gasification behaviour and process performance of black liquor and pyrolysis oil blends in pilot-scale. A secondary objective of this work was to demonstrate and assess the usefulness and accuracy of unconstrained thermodynamic equilibrium modelling as a tool for studying and predicting the characteristics of alkali-impregnated biomass entrained-flow gasification. The co-gasification of BL/PO blends was studied at the 3 MWth LTU Green Fuels pilot plant in a series of experimental studies between June 2015 and April 2016. The results of the studies showed that the blending of black liquor with the more energy rich pyrolysis oil increased the energetic efficiency of the BLG process without adversely affecting carbon conversion. The effect of blend ratio and reactor temperature on the gasification performance of PO and BL blends with up to 20 wt% PO was studied in order to assess the impact of alkali-dilution in fuel on the conversion characteristics. In addition to unblended BL, three blends with PO/BL ratios of 10/90, 15/85 and 20/80 wt% were gasified at a constant load of 2.75 MWth. The decrease in fuel inorganic content with increasing PO fraction resulted in more dilute green liquor (GL) and a greater portion of the feedstock carbon ended up in syngas as CO. As a consequence, the cold gas efficiency increased by about 5%-units. Carbon conversion was in the range 98.8-99.5% and did not vary systematically with either fuel composition or temperature. The validation of thermodynamic equilibrium simulation of black liquor and pyrolysis co-gasifications with experimental data revealed the need to be mindful of errors and uncertainities in fuel composition that can influence predictions of equilibrium temperature. However, provided due care is to taken to ensure the use of accurate fuel composition data, unconstrained TEMs can serve as a robust and useful tool for simulating catalytic entrained-flow gasification of biomass-based feedstocks. / LTU Biosyngas (Catalytic Gasification)
|
10 |
Contibution à la mise en place d'un co-gazéifieur pilote de mélanges boues de station d'épuration - déchet en lit fluidisé bouillonnant / Contribution to the implementation of a bubbling fluidised bed co-gasifier for wastewater sludge - waste blendsAkkache, Salah 06 July 2016 (has links)
Les boues de stations d’épurations sont un combustible difficile à valoriser par voie thermochimique à cause des fortes teneurs en eau, en azote et en fraction minérale. La co-gazéification avec d’autres gisements pourrait apporter une solution à ces contraintes. Afin d’étudier la faisabilité de ce procédé, un pilote industriel de de co-gazéification en lit fluidisé bouillonnant est conçu.Six co-combustibles potentiels ont été présélectionnés, à partir d’un large panel de gisements issus de la région PACA. La démarche expérimentale de ce travail concerne trois volets principaux qui consistent à :I. Etudier la faisabilité technique de co-gazéification à l’échelle laboratoire en vue de déterminer quel co-combustible est apte à compenser les faiblesses que présentent les boues.II. Contribuer à la définition des conditions opératoires de co-gazéification en lit fluidisé bouillonnant.III. Etudier le comportement en fluidisation des gisements sélectionné dans une maquette à température ambiante en mélange avec du sable.Les résultats indiquent que les tous les gisements retenus sont apte à être valorisés par co-gazéification. L’aptitude à la fluidisation des combustibles seuls est médiocre, l’utilisation de sable permet de l’améliorer. Un critère prédictif de la capacité maximale des lits fluidisés à contenir des déchets a été développé, une corrélation prédictive de la vitesse minimale de fluidisation de mélanges dissimilaires est également proposée. La teneur en combustible ne doit pas excéder les 10% en masse pour garantir une fluidisation correcte. Une vitesse de trois fois la vitesse minimale de fluidisation de l’inerte est la limite basse qui garantit un bon mélange. / The wastewater sludge composition (moisture, nitrogen and mineral matter content) leads to difficulties in disposal by thermochemical way. Co-gasification with other feedstock can improve the quality of the raw fuel gasification. In order to study the technical feasibility of wastewater sludge with other feedstock co-gasification, an industrial pilot scale bubbling fluidised bed co-gasifier is designed.Six potential co-feedstocks were preselected on technical and economic criteria, from a wide range of fields from the PACA region. The experimental approach of this work involves three main steps which are:I. The technical feasibility of co-gasification at laboratory scale, in order to identify which feedstock is able to compensate the sludge weaknesses.II. Identification of co-gasification conditions in fluidised bedIII. Cold fluidization ability study of the different feedstock blended with sand.The results indicate that all feedstock are recoverable through gasification. The fluidization ability of the fuel alone was poor, the blinding with sand improve it. A prediction criteria for the maximum capacity of fluidised bed of sand to improve the fluidization ability of waste is developed. A new correlation for minimum fluidization velocity is introduced. To obtain a correct fluidization the fuel concentration should be fixed below 10% by weight. The fluidization velocity should be fixed above three times sand minimum fluidization velocity to obtain a mixed bed.
|
Page generated in 0.0385 seconds