• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 22
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 65
  • 23
  • 17
  • 16
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une alternative végétale en fromagerie : préparation d’un extrait coagulant à partir des fruits de Balanites aegyptiaca : étude biochimique et application technologique / Plant alternative for dairy : preparation of a milk-clotting extract from Balanites aegyptiaca fruits : biochimical study and technological application

Beka, Robert Germain 21 November 2011 (has links)
Dans le cadre de la recherche d’un succédané à la présure, la pulpe des fruits de B. aegyptiaca a été utilisée comme source d’enzyme coagulant. Les fruits ont été assainis par lavage et traitement à l’eau de javel. Une solution de NaCl 5% a été utilisée comme milieu d’extraction. Le processus de purification est constitué des étapes suivantes: clarification au charbon actif et par diafiltration, chromatographies d’exclusion et d’échanges d’ions. Des études rhéologiques physico-chimiques et sensorielles ont été effectuées sur des fromages obtenus avec cet extrait.Les résultats de cette étude montrent qu’une protéase de 38 kDa a été isolée en milieu acide et trois protéases de 28, 70 et 85 kDa en milieu basique. Les tests sur les inhibiteurs, les analyses en MALDI-TOF couplée à la LC-MS et la digestion du gel de gélatine montrent que la protéase isolée en milieu acide est une aspartique tandis que celles isolées en milieu basique sont des protéases à sérine. Les protéases isolées sont capables d’hydrolyser les caséines α, β et κ. Le galactose, l’arabinose, le rhamnose, le xylose, le mannose, l’acide glucuronique et les hexosamines ont été détectés sur la partie glycosylée de ces protéases par GC/FID et GC/MS-EI. Cependant, la détection aux lectines a montré la présence du mannose et du fucose. Les paramètres physico-chimiques et organoleptiques montrent que le fromage obtenu avec l’extrait est comparable au fromage présure. Cette étude a montré que les protéases de l’extrait de la pulpe de Balanites aegyptiaca sont capables de remplacer la présure dans la fabrication des fromages locaux. Ce travail peut contribuer significativement au développement économique des localités agro-pastorales du Cameroun. / In the framework of the search for a substitute to calf rennet, the pulp of the B. aegyptiaca fruits was used as source of milk-clotting enzyme. The fruits were cleaned by washing and treatment with sodium hypochlorite. The NaCl 5% solution was used as medium of extraction. The purification process was made up of the following stages: clarification with activated charcoal and diafiltration, exclusion and ion exchange chromatographies. Physicochemical, rheological and sensory properties of cheese obtained with this vegetable rennet were studied. The results of this study showed that a protease of 38 kDa was extracted in acid medium and three proteases of 28, 70 and 85 kDa in basic medium. The inhibition test, MALDI-TOF analysis coupled with LC-MS and gelatin digestion by protease showed that the protease extracted in acid medium is aspartic while those isolated in basic medium are serine proteases. The isolated proteases are able to hydrolyze α, β et κ caseins. Galactose, arabinose, rhamnose, xylose, mannose, glucuronic acid and hexosamines were detected on the glycosyl part of these proteases by GC/FID and GC/ME-EI. However, detection with the lectins showed in more the presence of mannose and fucose. The physicochemical and organoleptic parameters showed that the cheese obtained with the extract is comparable with the standard cheese. This study showed that the proteases of the extract of the pulp of Balanites aegyptiaca are able to replace calf rennet int the manufacture of local cheeses. This work can contribute significantly to the economic development of the agro-pastoral localities of Cameroon.
2

Flocculation modelling in wastewater treatment

Thomas, David N. January 1999 (has links)
No description available.
3

Atividade coagulante e da toxidade da giroxina nativa e irradiada com Cobalto-60 isolada do veneno de Crotalus durissus terrificus /

Barros, Luciana Curtolo de. January 2010 (has links)
Orientador: Rui Seabra Ferreira Junior / Banca: Lucilene Delazari dos Santos / Banca: Nanci Nascimento / Resumo: A giroxina isolada do veneno de Crotalus durissus terrificus apresenta atividades coagulante e neurotóxica, caracterizada pelo "rolamento em barril". É uma serinoprotease do tipo trombina-símile que tem a capacidade de converter o fibrinogênio em fibrina. Visando a atenuação destas atividades, a irradiação com 60Co aparece como uma importante ferramenta. O presente estudo teve por objetivo isolar e purificar a giroxina e avaliar o efeito da irradiação com 60Co sobre suas atividades coagulante e tóxica. O isolamento da giroxina envolveu duas etapas cromatográficas: gel filtração em coluna Sephadex G-75 e afinidade em coluna Benzamidina-Sepharose 6B. O alto grau de pureza foi confirmado por RP-HPLC C2/C18 e pela análise eletroforética, que revelou uma massa molecular de aproximadamente 30 kDa. A giroxina nativa catalisou a hidrólise dos substratos cromogênicos S-2238 e S-2288, demonstrando tratar-se de uma serinoprotease pertencente à subclasse das enzimas trombina-símile, estável em diferentes pHs (5,5 a 8,5), sensível aos metais Mn2+ e Cu2+ e aos inibidores de serinoprotease PMSF e benzamidina. Apresentou melhor atividade coagulante sobre o plasma humano entre os pHs 6,0 e 7,4. A irradiação da giroxina nas doses de 0,5; 1,0 e 2,0 kGy anulou completamente suas atividades coagulante e tóxica. Os ensaios de toxicidade in vivo mostraram apenas alterações comportamentais sem demonstrar o rolamento em barril. Este fato sugere que as toxinas purificadas são mais sensíveis à irradiação, pois não há proteção mútua entre as proteínas presentes no veneno total. A giroxina nativa também não causou o bloqueio da contração neuromuscular in vitro sugerindo que a sua ação não tem efeito sobre o sistema nervoso periférico nas concentrações utilizadas / Abstract: Gyroxin isolated from Crotalus durissus terrificus venom presents coagulant and neurotoxic activities. It belongs to the thrombin-like enzyme group capable of converting fibrinogen into fibrin. To reduce these toxic activities, the irradiation with Cobalt-60 appears to be an important tool. The present study was carried out in order to isolate and purify the gyroxin and evaluate the effects of irradiation with Cobalt-60 on coagulant and toxic activities. The gyroxin isolation consisted of two chromatographic steps: gel filtration (Sephadex G-75) and affinity (Benzamidine-Sepharose 6B). The high purity level of gyroxin was confirmed by RP-HPLC C2/C18 and electrophoretic analysis that showed a molecular weight of 30 kDa. The native gyroxin hydrolyzed the chromogenic substrates S-2238 and S-2288, indicating that this enzyme is a serine proteinase that belongs to the group of thrombin-like enzymes, stable when submitted to pHs from 5.5 to 8.5 and inhibited by Mn2+, Cu2+, PMSF and benzamidine. It was capable of coagulating human plasma at pH 6.0 and 7.4. The gyroxin irradiated at 0.5, 1.0 and 2.0 kGy doses neutralized the coagulant and toxic activities. The in vivo toxic study showed only behavioral alterations with no barrel rotation. This fact suggests that purified toxins are more sensitive to the irradiation because they e mutual protection with the other proteins present in the total venom. The native gyroxin was not able to block in vitro neuromuscular contraction, suggesting that the action of gyroxin, in the concentration used in this study, has no effect on the peripheral nervous system / Mestre
4

Atividade coagulante e da toxidade da giroxina nativa e irradiada com Cobalto-60 isolada do veneno de Crotalus durissus terrificus

Barros, Luciana Curtolo de [UNESP] 29 June 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-06-29Bitstream added on 2014-06-13T18:20:27Z : No. of bitstreams: 1 barros_lc_me_botfm.pdf: 1332337 bytes, checksum: 59f455ce412e913486df8681ce6b0e01 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / A giroxina isolada do veneno de Crotalus durissus terrificus apresenta atividades coagulante e neurotóxica, caracterizada pelo “rolamento em barril”. É uma serinoprotease do tipo trombina-símile que tem a capacidade de converter o fibrinogênio em fibrina. Visando a atenuação destas atividades, a irradiação com 60Co aparece como uma importante ferramenta. O presente estudo teve por objetivo isolar e purificar a giroxina e avaliar o efeito da irradiação com 60Co sobre suas atividades coagulante e tóxica. O isolamento da giroxina envolveu duas etapas cromatográficas: gel filtração em coluna Sephadex G-75 e afinidade em coluna Benzamidina-Sepharose 6B. O alto grau de pureza foi confirmado por RP-HPLC C2/C18 e pela análise eletroforética, que revelou uma massa molecular de aproximadamente 30 kDa. A giroxina nativa catalisou a hidrólise dos substratos cromogênicos S-2238 e S-2288, demonstrando tratar-se de uma serinoprotease pertencente à subclasse das enzimas trombina-símile, estável em diferentes pHs (5,5 a 8,5), sensível aos metais Mn2+ e Cu2+ e aos inibidores de serinoprotease PMSF e benzamidina. Apresentou melhor atividade coagulante sobre o plasma humano entre os pHs 6,0 e 7,4. A irradiação da giroxina nas doses de 0,5; 1,0 e 2,0 kGy anulou completamente suas atividades coagulante e tóxica. Os ensaios de toxicidade in vivo mostraram apenas alterações comportamentais sem demonstrar o rolamento em barril. Este fato sugere que as toxinas purificadas são mais sensíveis à irradiação, pois não há proteção mútua entre as proteínas presentes no veneno total. A giroxina nativa também não causou o bloqueio da contração neuromuscular in vitro sugerindo que a sua ação não tem efeito sobre o sistema nervoso periférico nas concentrações utilizadas / Gyroxin isolated from Crotalus durissus terrificus venom presents coagulant and neurotoxic activities. It belongs to the thrombin-like enzyme group capable of converting fibrinogen into fibrin. To reduce these toxic activities, the irradiation with Cobalt-60 appears to be an important tool. The present study was carried out in order to isolate and purify the gyroxin and evaluate the effects of irradiation with Cobalt-60 on coagulant and toxic activities. The gyroxin isolation consisted of two chromatographic steps: gel filtration (Sephadex G-75) and affinity (Benzamidine-Sepharose 6B). The high purity level of gyroxin was confirmed by RP-HPLC C2/C18 and electrophoretic analysis that showed a molecular weight of 30 kDa. The native gyroxin hydrolyzed the chromogenic substrates S-2238 and S-2288, indicating that this enzyme is a serine proteinase that belongs to the group of thrombin-like enzymes, stable when submitted to pHs from 5.5 to 8.5 and inhibited by Mn2+, Cu2+, PMSF and benzamidine. It was capable of coagulating human plasma at pH 6.0 and 7.4. The gyroxin irradiated at 0.5, 1.0 and 2.0 kGy doses neutralized the coagulant and toxic activities. The in vivo toxic study showed only behavioral alterations with no barrel rotation. This fact suggests that purified toxins are more sensitive to the irradiation because they e mutual protection with the other proteins present in the total venom. The native gyroxin was not able to block in vitro neuromuscular contraction, suggesting that the action of gyroxin, in the concentration used in this study, has no effect on the peripheral nervous system
5

Wastewater Carbon Diversion and Recovery via Primary Sludge Production, Thermal Hydrolysis, and Anaerobic Digestion

Luo, Hao 13 November 2023 (has links)
This study aims to provide the latest understanding of cutting-edge technologies that enable wastewater organic carbon diversion and recovery through the enhancement of sludge production and blending, digestibility, dewaterability, and dewatered cake odor emission control. A comprehensive literature review showed that iron-based coagulants tend to show less negative impact than aluminum-based coagulants. This can be attributed to the reduction of ferric to ferrous ions in the course of anaerobic digestion (AD), which leads to a suite of changes in protein bioavailability, alkalinity, and hydrogen sulfide levels, and in turn the sludge dewaterability and odor potential. In terms of the roles of thermal hydrolysis pretreatment (THP), the mechanism review indicated that the improvement of sludge dewaterability and anaerobic digestibility as a result of THP was because of the destruction of extracellular polymeric substances and increase of hydrolysis rate. However, THP also brings side effects such as high free residual ammonia and recalcitrant dissolved organic nitrogen (rDON) in the effluent. Besides, a comprehensive understanding of the formation of the odorous compounds in the sludge treatment processes indicated that sulfurous and nitrogenous compounds are usually regarded as the major odor-causing substances. A Pilot THP-AD study indicated that adding aluminum to produce primary sludge can improve overall plant sludge digestibility, dewaterability, and well as the rDON reduction. Moreover, results from a pilot THP-AD and biochemical methane potential (BMP) test study indicated that adding a secondary thermal hydrolysis after a primary thermal hydrolysis-AD system can still create new BMP. Finally, a pilot study was conducted to evaluate the effect of aeration in the sludge holding tank on biosolids odor emission. The two rounds of bench-scale aeration studies indicated that aerating the sludge in holding tanks reduced peak emission concentrations of sulfurous odorous compounds. Further full-scale validation confirmed that aeration can be used by utilities as a simple means for biosolids odor control. / Doctor of Philosophy / Public wastewater treatment annually consumed 3-4% energy production and contributed 1% greenhouse gas emission in the U.S. Meanwhile, the chemical energy contained in wastewater was estimated to be 9.3 times the energy it takes to treat it. Therefore, harvesting wastewater energy is proposed as a viable means for achieving energy and carbon neutral wastewater treatment. The approach to sending wastewater energy as much as possible to anaerobic digesters in which microorganisms help harvest useful energy in the form of flammable methane was evaluated in this study. From literature, we learned that chemicals used for upstream wastewater energy capture and nutrient removal may make the downstream energy recovery difficult. While, thermal hydrolysis pretreatment, an industrial-scale pressure cooker, can be used to improve the ease of microbial bioenergy harvesting by making organics more biodegradable. However, thermal hydrolysis may also bring side effect in terms of recalcitrant organic formation. Also, in the course of energy recovery, the production and emission of nuisance odor may occur but can be controlled. Building on this existing knowledge, this study evaluated the pros and cons of the approach to using chemicals to capture and recover energy from wastewater. The results showed that the extents of energy recovery and savings was greater than the compromised solids reduction from the process. Moreover, results from a biochemical methane potential test study indicated that adding a secondary thermal hydrolysis can recover even more chemical energy from wastewater. In the end, a pilot study was conducted to develop a simple and economical approach to mitigating the odor emission issue during sludge handling. Results showed that pumping air into the sludge holding tank can substantially reduce peak odor emission. This approach was later verified in a full-scale test and recommended to utilities as a simple means for biosolids odor control.
6

Caractérisations optiques et microscopiques de la structure de membranes organiques d'ultrafiltration : application à la production d'eau potable

Tamime, Rahma 19 July 2011 (has links)
Afin d’améliorer la compréhension des effets des coagulants sur les performances des membranes organiques d'ultrafiltration employées dans la production d’eau potable, une caractérisation structurale complète (surface et volume) de l’échelle microscopique à l’échelle macroscopique des membranes (neuves, après filtration de coagulant et après lavage chimique) est utilisée. En premier lieu, les propriétés structurales des membranes planes neuves PES ont été déterminées en fonction du seuil de coupure. Les caractéristiques de surface (taille de pore et taux de remplissage) déterminées par le MEB et les caractéristiques en volume déterminées par l’ellipsométrie de speckle ont montré une évolution croissante avec le seuil de coupure. L’utilisation du LB et de l’AFM avec différentes fenêtres d’observation a montré que la détermination de la rugosité d'une membrane est bien fonction de l'échelle d’observation. L’AFM a permis de différencier les membranes selon leur seuil de coupure mais aussi selon les méthodes de fabrication. En second lieu, l’impact de la nature des coagulants en polychlorosulfate d'aluminium (PAX-XL 7A et Aqualenc F1) sur les propriétés structurales des membranes en PES 100 kDa a été abordé. L'utilisation du modèle d’Hermia et les analyses multi-échelle de la rugosité de surface ont montré que la filtration de suspensions de cogulants de PAX-XL 7A ou Aqualenc F1 produit un dépôt à la surface dû à l’adsorption et/ou la précipitation des produits d’hydrolyse de coagulants, provoquant une modification importante de la morphologie de surface de la membrane. Cette modification structurale est aussi révélée par des mesures du speckle de l’onde diffusée. Des analyses MEB et AFM ont révélé un changement de l’état de surface de la membrane lavées après colmatage. L’extension des techniques de caractérisation structurale, en particulier l'AFM, à l'étude des fibres creuses en AC et PVDF et leur vieillissement a montré une voie d’exploitation très intéressante. / For the better understanding of the effects of the use of coagulants on the performance of ultrafiltration organic membranes applied in the production of drinking water, a complete structural characterization (surface and bulk) from microscopic scale to macroscopic scale of the membranes (new, after filtration of coagulant and after chemical cleaning) is used. First, the structural properties of new flat-sheet PES membranes were determined as a function of MWCO. The characteristics of surface (pore size and recovery rate) determined by SEM and the features of bulk determined by speckle ellipsometry showed an increasing trend with MWCO. The use of WLI and AFM with different observation scales showed that the determination of the roughness of a membrane significantly depends on the observation scale. The AFM was able to differentiate membranes according to their MWCO as well as to the methods of manufacturing. Second, the impact of the nature of aluminum polychlorosulfate coagulants (PAX-XL 7A and Aqualenc F1) on the structural properties of PES 100 kDa membrane is addressed. The use of Hermia model and the analysis of multi-scale surface roughness showed that the filtration of suspensions of coagulants PAX-XL 7A or Aqualenc F1 produces a deposit on the surface through adsorption and/or precipitation of hydrolysis products of coagulant, causing a significant change in the surface morphology of the membrane. This structural modification is also revealed by the measurements of speckle of the light scattering. SEM and AFM analysis revealed a change in the state of surface of the membrane after cleaning of fouled membranes. An extension of the structural characterization techniques, in particular the AFM to the study of hollow fibers and their aging has shown a very interesting way of analysis.
7

Viabilidade técnica e econômica da regeneração de coagulantes a partir de lodos gerados em estações de tratamento de água. / Technical and economical feasibility of coagulant recovery from water treatment plant sludges.

Freitas, Juliana Gardenalli de 15 December 2004 (has links)
Esse trabalho teve como objetivo avaliar a viabilidade técnica e econômica da regeneração de coagulantes a partir do lodos gerados em ETA\'s. Foi considerado que o coagulante regenerado será empregado em sistemas de tratamento de esgotos. A regeneração de coagulante consiste basicamente em promover uma alteração no pH do lodo, de forma que os hidróxidos metálicos presentes são solubilizados. A fase líquida com alta concentração de metais é então separada, constituindo o coagulante regenerado. Consequentemente, essa tecnologia propicia a recuperação de um recurso, que é o coagulante, e a redução de lodo. Para a verificação da viabilidade técnica foram realizados ensaios de acidificação em escala de bancada com lodos das ETA\'s Guaraú e Rio Grande, visando o estudo das condições de regeneração, da qualidade do coagulante produzido e do lodo restante. Foi verificado que do ponto de vista técnico a regeneração de coagulantes é uma alternativa possível, gerando um coagulante aproximadamente 100 vezes mais diluído que os comerciais, mas com desempenho satisfatório na aplicação no tratamento de efluentes de reator UASB. As reduções médias de sólidos em suspensão nos lodos utilizados foram de 28% e 53%. A avaliação econômica foi realizada considerando uma ETA com características similares à ETA Rio Grande, com um sistema de regeneração em funcionamento. Foi verificado que considerando as reduções de custos decorrentes da diminuição de lodo a ser tratado e disposto, o custo de produção do coagulante regenerado é muito próximo ao custo do coagulante comercial. Portanto, conclui-se que hoje em dia essa tecnologia deve ser considerada como uma alternativa potencialmente viável dos pontos de vista técnico e econômico para o tratamento e reaproveitamento de lodo de ETA\'s. / The primary goal of this work was to evaluate the technical and economical feasibility of coagulant recovery from water treatment plant sludges, considering that the recovered coagulant is going to be used in wastewater treatment plants. The coagulant recovery technology consists in change the sludge pH, in order to solubilize the present metal hydroxides. The liquid phase with high metals concentrations is then separated, becoming the recovered coagulant. This technology provides a resource recovery, which is the coagulant, and also a reduction in the amount of sludge that needs to be treated and disposed. To verify the technical feasibility, acidification bench tests were conduced using sludges from Guaraú e Rio Grande water treatment plants, in order to study the regeneration conditions, the recovered coagulant quality and the remaining sludge. From the technical point of view, it was verified that coagulant recovery is a possible alternative, producing a coagulant 100 times more diluted than the commercial coagulant, but with a satisfactory behavior in the treatment of UASB reactor effluent. The suspended solids average reductions in the Rio Grande and Guaraú water treatment plants sludges were 53% and 28%, respectively. The economical evaluation was done using the results obtained in the bench tests and considering a water treatment plant similar to Rio Grande. It was verified that considering the costs decrease due to the sludge reduction, the recovered coagulant production cost was very similar to commercial coagulants cost. Thus, it was concluded that nowadays this technology must be considered as a potential alternative for the treatment and reuse for water treatment plant sludges, regarding to the technical and economical aspects.
8

Experimental Investigation of the Effects of Coagulant Dose and Permeate Flux on Membrane Fouling in a Moving Bed Biofilm Reactor-Membrane Process

Karimi, Masoomeh 20 April 2012 (has links)
The application of membrane bioreactors (MBRs) to wastewater treatment is increasing due to their ability to operate at high biomass concentrations and to deliver effluents of high quality. The major challenges associated with the application of MBRs is fouling which can shorten the useful life of the membrane, increase in the amount of energy consumed, and the cost for membrane cleaning. The main reasons for fouling are the deposition of solids as a cake layer, pore plugging by colloidal particles, adsorption of soluble compounds and biofouling. Fouling is a particular problem for activated sludge membrane bioreactors (AS-MBRs) since this process deals with liquors having a high concentration of total solids as well as dissolved compounds such as extracellular polymeric substances (EPS). The combination of a moving bed biofilm reactor and a membrane reactor (MBBR-MR) has significant potential. It may be considered as a compact wastewater treatment process which can compensate for the drawbacks of AS-MBRs. Readily biodegradable COD is removed in the MBBR while particulate matter is separated by the membrane. To further reduce the membrane fouling the effects of adding an intermediate coagulation stage was investigated critically on membrane fouling. The present study includes an overall assessment of the performance of a combined MBBR-MR system, based on the chemical oxygen demand (COD) removal efficiency and membrane fouling mechanism. The required test runs were conducted using pilot-scale MBBR and ultra filtration membrane. The pilot MBBR had a working volume of 1.8 m3 with a 60% carrier fill fraction. The MBBR was operated with loading rate of 78 ± 21 g/m2/d (HRT of 4 h). The ultra-filtration was spiral wound and composed of polyethersulfone (PES) with a pore size of 0.03 microns. The MBBR feed was obtained from a final treated wastewater effluent in a food processing plant located in SW Ontario. In this research, ferric chloride was also employed as a coagulant and influences of different coagulant doses and permeate fluxes on membrane fouling were studied. Based on the experimental results, it was found that the combination of MBBR with membrane filtration can produce a constant high quality permeate that is appropriate for water reuse purposes. The composition analysis of permeate showed that the stream is free of suspended solids and the average COD turns to 75 ± 25 mg/l. In addition, the MBBR had a SCOD removal of 76% ± 7% which is considered as a reasonable efficiency for a single reactor. Operating the membrane without adding coagulant caused rapid fouling in a short time period and the Trans Membrane Pressure (TMP) reached the maximum allowable pressure of 10 psi. However, addition of coagulant was found to decrease the fouling of the membrane as well as increasing the filtration time. The extent of the pre-coagulation effect on membrane fouling was found to strongly depend on the dosage of the coagulant and the MBBR effluent characteristics. A coagulant dose of 400 mg/l with a permeate flux of 7.6 LMH performed the best at reducing membrane fouling. Colloidal fouling was found to be a significant fouling mechanism at low coagulant dose (e.g. 200 mg/l), while cake formation appeared to be mainly responsible for fouling at higher coagulant doses. Permeate flux was found to have a significant effect on the fouling of the membrane. The presence of colloidal matters at low fluxes and TSS at higher fluxes were responsible for fouling of the membrane by blocking the pores and formation of the cake layer on the membrane surface, respectively. Then later addition of Dissolved Air Flotation (DAF) inside the factory had a noticeable effect on wastewater characteristics and consequently on fouling of the membrane. A 22% and 31% improvement in TCOD and TSS in the wastewater was observed leading to reduction in the fouling.
9

Application of flocs analysis for coagulation optimization at the Split Lake water treatment plant

Geng, Yi 06 January 2006 (has links)
The success of surface water treatment strongly depends on the effectiveness of coagulant performance. Aluminium sulfate (alum), the most widely used coagulant in water treatment plants in Canada, is well known for its poor performance in cold water. Polyaluminium chloride (PACl), a relatively new polymeric aluminium coagulant increasingly being used in water treatment plants, is found to have many advantages over conventional alum. However, PACl hydrolysis reaction is quite complex and its action is not fully understood. In this research, a series of bench-scale jar tests with alum and PACl was conducted. Alum and PACl coagulation flocs were analyzed for the evaluation of coagulant performances at 19C and 5C for the Split Lake water treatment plant. The results of this research indicated that the settling properties of PACl flocs were superior to those of alum flocs, especially at the lower temperature. The average size of PACl flocs was relatively smaller than that of alum flocs. The density of PACl flocs could be higher than that of alum flocs. And the number of settled PACl flocs could be higher than that of settled alum flocs. The effects of temperature on alum flocs and PACl flocs were different. Alum flocs size decreased at 5C. This is most likely due to the existence of monomeric aluminium species in alum aqueous solution. PACl flocs size did not change significantly at the 5C. This may be due to the existence of polymeric aluminium species in PACl aqueous solution. / February 2006
10

Application of flocs analysis for coagulation optimization at the Split Lake water treatment plant

Geng, Yi 06 January 2006 (has links)
The success of surface water treatment strongly depends on the effectiveness of coagulant performance. Aluminium sulfate (alum), the most widely used coagulant in water treatment plants in Canada, is well known for its poor performance in cold water. Polyaluminium chloride (PACl), a relatively new polymeric aluminium coagulant increasingly being used in water treatment plants, is found to have many advantages over conventional alum. However, PACl hydrolysis reaction is quite complex and its action is not fully understood. In this research, a series of bench-scale jar tests with alum and PACl was conducted. Alum and PACl coagulation flocs were analyzed for the evaluation of coagulant performances at 19C and 5C for the Split Lake water treatment plant. The results of this research indicated that the settling properties of PACl flocs were superior to those of alum flocs, especially at the lower temperature. The average size of PACl flocs was relatively smaller than that of alum flocs. The density of PACl flocs could be higher than that of alum flocs. And the number of settled PACl flocs could be higher than that of settled alum flocs. The effects of temperature on alum flocs and PACl flocs were different. Alum flocs size decreased at 5C. This is most likely due to the existence of monomeric aluminium species in alum aqueous solution. PACl flocs size did not change significantly at the 5C. This may be due to the existence of polymeric aluminium species in PACl aqueous solution.

Page generated in 0.0513 seconds