• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of feedstock properties on gasification plant performance

Sloan, Elizabeth Patricia January 1996 (has links)
No description available.
2

Cogasification of coal and biomass : impact on condensate and syngas production

Aboyade, Akinwale Olufemi 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Gasification provides a proven alternative to the dependence on petroleum for the production of high value products such as liquid fuels and chemicals. Syngas, the main product from gasification can be converted to fuels and chemicals via a number of possible synthesis processes. Coal and natural gas are currently the main feedstock used for syngas production. In South Africa (SA), Sasol operates the largest commercial coal-to-liquids conversion process in the world, based on updraft fixed bed gasification of low grade coal to syngas. Co-utilizing alternative and more sustainable feedstock (such as biomass and wastes) with coal in existing coal-based plants offers a realistic approach to reducing the costs and risks associated with setting up dedicated biomass conversion plants. An experimental and modelling investigation was performed to assess the impacts of co-gasifying two of the most commonly available agricultural wastes in SA (sugarcane bagasse and corn residue) with typical low grade SA coals, on the main products of updraft fixed bed gasification, i.e. liquid condensates and syngas. Condensates are produced in the pyrolysis section of the updraft gasifier, whereas syngas is a result of residual char conversion. An experimental set-up that simulates the pyrolysis section of the gasifier was employed to investigate the yield and composition of devolatilized products at industrially relevant conditions of 26 bars and 400-600°C. The results show that about 15 wt% of coal and 70 wt% of biomass are devolatilized during the pyrolysis process. The biomass derived condensates were determined to comprise of significantly higher quantities of oxygenates such as organic acids, phenols, ketones, and alcohols, whereas coal derived hydrocarbon condensates were dominated by polycyclic aromatic hydrocarbons, creosotes and phenols. Results of investigation into the influence of coal-biomass feedstock mix ratio on yields of products from pyrolysis show limited evidence of non-additive or synergistic behaviour on the overall distribution of solid, liquid and gas yields. On the other hand, in terms of the distribution of specific liquid phase hydrocarbons, there was significant evidence in favour of non-additive pyrolysis behaviour, as indicated by the non-additive yield distribution of specific chemicals. Synergistic trends could also be observed in the thermogravimetric (TGA) study of pyrolysis under kinetically controlled non-isothermal conditions. Model free and model fitting kinetic analysis of the TGA data revealed activation energies ranging between 94-212 kJ mol-1 for the biomass fuels and 147-377 kJ mol-1 for coal. Synergistic interactions may be linked to the increased presence of hydrogen in biomass fuels which partially saturates free radicals formed during earlier stages of devolatilization, thereby preventing secondary recombination reactions that would have produced chars, allowing for the increased formation of volatile species instead. Analysis of char obtained from the co-pyrolysis experiments revealed that the fixed carbon and volatile content of the blended chars is is proportional to the percentage of biomass and coal in the mixture. CO2 reactivity experiments on the chars showed that the addition of biomass to coal did not impose any kinetic limitation on the gasification of blended chars. The blended chars decomposed at approximately the same rate as when coal was gasified alone, even at higher biomass concentrations in the original feedstock blend. Based on these observations, a semi-empirical equilibrium based simulation of syngas production for co-gasification of coalbiomass blends at various mix ratios was developed using ASPEN Plus. The model showed that H2/CO ratio was relatively unaffected by biomass addition to the coal fuel mix, whereas syngas heating value and thermal efficiency were negatively affected. Subsequent evaluation of the production cost of syngas at biomass inputs ranging between 0-20 wt% of coal reflected the significant additional cost of pretreating biomass (3.3% of total capital investment). This resulted in co-gasification derived syngas production costs of ZAR146/tonne (ZAR12.6/GJ) at 80:20 coalbiomass feedstock ratio, compared to a baseline (coal only) cost of ZAR130/tonne (ZAR10.7/GJ). Sensitivity analysis that varied biomass costs from ZAR0 ZAR470 revealed that syngas production costs from co-gasification remained significantly higher than baseline costs, even at low to zero prices of the biomass feedstock. This remained the case even after taking account of a carbon tax of up to ZAR117/tCO2. However, for range of carbon tax values suggested by the SA treasury (ZAR70 tCO2 to ZAR200 tCO2), the avoided carbon tax due to co-feeding biomass can offset between 40-96% of the specific retrofitting cost at 80:20 coal-biomass feedstock mass ratio. In summary, this dissertation has showed that in addition to the widely recognized problems of ash fouling and sintering, co-feeding of biomass in existing coal based updraft gasification plants poses some challenges in terms of impacts on condensates and syngas quality, and production costs. Further research is required to investigate the potential in ameliorating some of these impacts by developing new high value product streams (such as acetic acid) from the significant fraction of condensates derived from biomass. / AFRIKAANSE OPSOMMING: Vergassing bied 'n beproefde alternatief vir die afhanklikheid van petroleum vir die produksie van hoë waarde produkte soos vloeibare brandstof en chemikalieë. Sintese gas, die belangrikste produk van vergassing, kan omgeskakel word na brandstof en chemikalieë deur 'n aantal moontlike sintese prosesse. Steenkool en aardgas is tans die belangrikste grondstowwe wat gebruik word vir sintese gas produksie. In Suid-Afrika (SA) bedryf Sasol die grootste kommersiële steenkool-totvloeistof omskakelingsproses in die wêreld, gebaseer op stygstroom vastebed vergassing van laegraadse steenkool na sintese gas. Die gebruik van alternatiewe en meer volhoubare grondstowwe (soos biomassa en afval) saam met steenkool in die bestaande steenkool-gebaseerde aanlegte bied 'n realistiese benadering tot die vermindering van die koste en risiko's wat verband hou met die oprigting van toegewyde biomassa omskakelingsaanlegte. 'n Eksperimentele en modelleringsondersoek is uitgevoer om die impak van gesamentlike vergassing van twee van die mees algemeen beskikbare landbouafvalprodukte in Suid-Afrika (suikerriet bagasse en mieliereste) met tipiese laegraadse SA steenkool op die vernaamste produkte van stygstroom vastebed vergassing, dws vloeistof kondensate en sintese gas, te evalueer. Kondensate word geproduseer in die piroliese gedeelte van die stygstroomvergasser, terwyl sintese gas 'n resultaat is van die omskakeling van oorblywende houtskool. 'n Eksperimentele opstelling wat die piroliese gedeelte van die vergasser simuleer is gebruik om die opbrengs en die samestelling van produkte waarvan die vlugtige komponente verwyder is by industrie relevante toestande van 26 bar en 400-600°C te ondersoek. Die resultate toon dat ongeveer 15% (massabasis) van die steenkool en 70% (massabasis) van die biomassa verlore gaan aan vlugtige komponente tydens die piroliese proses. Daar is vasgestel dat die kondensate afkomstig van biomassa uit aansienlik hoër hoeveelhede suurstofryke verbindings soos organiese sure, fenole, ketone, en alkohole bestaan, terwyl koolwaterstofkondensate afkomstig uit steenkool oorwegend bectaan uit polisikliese aromatise verbindings, kreosote en fenole. Die resultate van die ondersoek na die invloed van die verhouding van steenkool tot biomassa grondstof op piroliese opbrengste toon beperkte bewyse van nie-toevoegende of sinergistiese gedrag op die algehele verspreiding van soliede, vloeistof en gas opbrengste. Aan die ander kant, in terme van die verspreiding van spesifieke vloeibare fase koolwaterstowwe, was daar beduidende bewyse ten gunste van 'n sinergistiese piroliese gedrag. Sinergistiese tendense is ook waargeneem in die termogravimetriese (TGA) studie van piroliese onder kineties beheerde nieisotermiese toestande. Modelvrye en modelpassende kinetiese analise van die TGA data het aan die lig gebring dat aktiveringsenergieë wissel tussen 94-212 kJ mol-1 vir biomassa brandstof en 147-377 kJ mol-1 vir steenkool. Ontleding van die houtskool verkry uit die gesamentlike piroliese eksperimente het aan die lig gebring dat die onmiddellike kenmerke van die gemengde houtskool die geweegde gemiddelde van die individuele waardes vir steenkool en biomassa benader. CO2 reaktiwiteitseksperimente op die houtskool het getoon dat die byvoeging van biomassa by steenkool nie enige kinetiese beperking op die vergassing van gemengde houtskool plaas nie. Die gemengde houtskool ontbind teen ongeveer dieselfde tempo as wanneer steenkool alleen vergas is, selfs teen hoër biomassa konsentrasies in die oorspronklike grondstofmengsel. Op grond van hierdie waarnemings is 'n semi-empiriese ewewig-gebaseerde simulasie van sintese gas produksie vir gesamentlike vergassing van steenkool-biomassa-mengsels vir verskeie mengverhoudings ontwikkel met behulp van Aspen Plus. Die model het getoon dat die H2/CO verhouding relatief min geraak is deur biomassa by die steenkool brandstofmengsel te voeg, terwyl sintese gas se verhittingswaarde en termiese doeltreffendheid negatief geraak is. Daaropvolgende evaluering van die produksiekoste van sintese gas vir biomassa insette wat wissel tussen 0-20% (massabasis) van die hoeveelheid steenkool het die aansienlike addisionele koste van die vooraf behandeling van biomassa (3.3% van die totale kapitale belegging) gereflekteer. Dit het gelei tot 'n produksiekoste van ZAR146/ton (ZAR12.6/GJ) vir sintese gas afkomstig uit gesamentlike-vergassing van 'n 80:20 steebkool-biomassa grondstof mengesl, in vergelyking met 'n basislyn (steenkool) koste van ZAR130/ton (ZAR10.7/GJ). Sensitiwiteitsanalise wat biomassa koste van ZAR0 - ZAR470 gevarieër het, het aan die lig gebring dat sintese gas produksiekoste van gesamentlike vergassing aansienlik hoër bly as die basislyn koste, selfs teen 'n lae of nul prys van biomassa grondstof. Dit bly die geval selfs nadat koolstof belasting van tot ZAR117/tCO2 in ag geneem is. In opsomming het hierdie verhandeling getoon dat, bykomend tot die wyd-erkende probleme van as besoedeling en sintering, die gesamentlike gebruik van biomassa in bestaande steenkool stygstroom vergassingsaanlegte groot uitdagings inhou in terme van die impak op die kwaliteit van kondensate en sintese gas, asook produksiekoste. Verdere navorsing is nodig om die potensiaal te ondersoek vir die verbetering van sommige van hierdie impakte deur die ontwikkeling van nuwe hoë waarde produkstrome (soos asynsuur) uit die beduidende breukdeel van kondensate wat verkry word uit biomassa.

Page generated in 0.0942 seconds