Spelling suggestions: "subject:"goal team sas"" "subject:"goal team suas""
1 |
Coal seam gas associations in the Huntly, Ohai and Greymouth regions, New ZealandButland, Caroline January 2006 (has links)
Coal seam gas has been recognised as a new, potential energy resource in New Zealand. Exploration and assessment programmes carried out by various companies have evaluated the resource and indicated that this unconventional gas may form a part of New Zealand's future energy supply. This study has delineated some of the controls between coal properties and gas content in coal seams in selected New Zealand locations. Four coal cores, one from Huntly (Eocene), two from Ohai (Cretaceous) and one from Greymouth (Cretaceous), have been sampled and analysed in terms of gas content and coal properties. Methods used include proximate, sulphur and calorifc value analyses; ash constituent determination; rank assessment; macroscopic analysis; mineralogical analysis; maceral analysis; and gas analyses (desorption, adsorption, gas quality and gas isotopes). Coal cores varied in rank from sub-bituminous B-A (Huntly); sub-bituminous C-A (Ohai); and high volatile bituminous A (Greymouth). All locations contained high vitrinite content (~85 %) with overall relatively low mineral matter observed in most samples. Mineral matter consisted of both detrital grains (quartz in matrix material) and infilling pores and fractures (clays in fusinite pores; carbonates in fractures). Average gas contents were 1.6 m3/t in the Huntly core, 4.7 m3/t in the Ohai cores, and 2.35 m3/t in the Greymouth core. The Ohai core contained more gas and was more saturated than the other cores. Carbon isotopes indicated that the Ohai gas composition was more mature, containing heavier 13C isotopes than either the Huntly or Greymouth gas samples. This indicates the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived from a biogenic (by CO2 reduction) source. The ash yield proved to be the dominant control on gas volume in all locations when the ash yield was above 10 %. Below 10 % the amount of gas variation is unrelated to ash yield. Although organic content had some influence on gas volume, associations were basin and /or rank dependant. In the Huntly core total gas content and structured vitrinite increased together. Although this relationship did not appear in the other cores, in the Ohai SC3 core lost gas and fusinite are associated with each other, while desmocollinite (unstructured vitrinite) correlated positively with residual gas in the Greymouth core. Although it is generally accepted that higher rank coals will have higher adsorption capacities, this was not seen in this data set. Although the lowest rank coal (Huntly) contains the lowest adsorption capacity, the highest adsorption capacity was not seen in the highest rank coal (Greymouth), but in the Ohai coal instead. The Ohai core acted like a higher rank coal with respect to the Greymouth coal, in terms of adsorption capacity, isotopic signatures and gas volume. Two hypothesis can be used to explain these results: (1) That a thermogenically derived gas migrated from down-dip of the SC3 and SC1 drill holes and saturated the section. (2) Rank measurements (e.g. proximate analyses) have a fairly wide variance in both the Greymouth and Ohai coal cores, thus it maybe feasible that the Ohai cores may be higher rank coal than the Greymouth coal core. Although the second hypothesis may explain the adsorption capacity, isotopic signatures and the gas volume, when the data is plotted on a Suggate rank curve, the Ohai coal core is clearly lower rank than the Greymouth core. Thus, pending additional data, the first hypothesis is favoured.
|
2 |
Groundwater characterisation and disposal modelling for coal seam gas recoveryTaulis, Mauricio January 2007 (has links)
Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal deposits. Mining this gas involves drilling a well directly into an underground coal seam, and pumping out the water (CSG water) flowing through it. Presently, CSG is under exploration in New Zealand (NZ); however, there is concern about CSG water disposal in NZ mainly because of the controversy that this activity has generated in some basins in the United States (US). The first part of this thesis studies CSG water from a well in Maramarua (NZ) and compares it to water from US basins. The NZ CSG water from this well had high pH (7.8), alkalinity in the order of 360 mg/l as CaCO₃, high sodium (334 mg/l), bicarbonate (435 mg/l), and chloride (146 mg/l). These ions also occur in US CSG waters, and their concentrations follow the same trend - high sodium, bicarbonate, and chloride with low calcium, magnesium, and sulphate concentrations. Prior to this work, little detailed analyses of CSG water quality variability from a well had been carried out. A Factor Analysis of 33 Maramarua samples was conducted and revealed that about one third of the variations were due to sample degassing, which induced calcium carbonate precipitation - this was supported by experimental work (sample sparging) and geochemical modelling (MINTEQA2). This finding is important for CSG water management because, as calcium concentrations decrease, higher SAR values are generated, and this can cause problems if CSG waters are disposed on land. In the second part, this thesis assesses the potential environmental effects of disposing CSG waters in NZ by formulating management options and a simple wastewater treatment system. This was carried out by studying the ecological response (soils, plant, and aquatic life) resulting from CSG water disposal operations in the US, and by applying relevant salinity and sodicity guidelines to the interaction between soils and CSG waters from Maramarua. This work showed that similar problems are likely to occur in NZ if CSG water disposal takes place without proper controls. Such a study has never been carried out in a region before actual CSG development has taken place, so this work shows how to quantify the effects arising from CSG water disposal prior to full scale production. This can be particularly useful for CSG stakeholders wanting to develop this resource in other regions around the world. A simple treatment system using Ngakuru zeolites has proven effective in reducing the SAR of Maramarua CSG water. Laboratory results indicate that these zeolites work by exchanging sodium cations in the water by other cations contained within the zeolite structure but with slow ion exchange kinetics. The calculated sodium absorption capacity for these natural zeolites ranged from 11.3 meq/100g to 16.7 meq/100g (flow-through conditions without previous regeneration). In addition, these experiments showed that the ion exchange process is accompanied by some dissolution (sulphate, boron, TOC, sodium, calcium, magnesium, potassium and reactive silica), but mainly at the beginning of the treatment process. Nevertheless, using this system, 180 grams of zeolite material were used to treat an initial 1.83 litres of Maramarua CSG water thus reducing potential soil infiltration problems to nil. As more CSG water was treated, the zeolites kept reducing SAR values but at a lesser rate until 4.53 litres of CSG water had been treated. A step-by-step methodology to assess treatment design options for these materials has been developed and will aid future researchers and engineers. This thesis presents the first comprehensive study of CSG water management in NZ. It also presents an ion exchange treatment system using natural zeolites already available in NZ. In conclusion, the research finds that, whether through adequate management or active treatment, CSG waters can be safely disposed without creating major environmental problems, and can even be used in beneficial applications.
|
3 |
Coal seam gas associations in the Huntly, Ohai and Greymouth regions, New ZealandButland, Caroline January 2006 (has links)
Coal seam gas has been recognised as a new, potential energy resource in New Zealand. Exploration and assessment programmes carried out by various companies have evaluated the resource and indicated that this unconventional gas may form a part of New Zealand's future energy supply. This study has delineated some of the controls between coal properties and gas content in coal seams in selected New Zealand locations. Four coal cores, one from Huntly (Eocene), two from Ohai (Cretaceous) and one from Greymouth (Cretaceous), have been sampled and analysed in terms of gas content and coal properties. Methods used include proximate, sulphur and calorifc value analyses; ash constituent determination; rank assessment; macroscopic analysis; mineralogical analysis; maceral analysis; and gas analyses (desorption, adsorption, gas quality and gas isotopes). Coal cores varied in rank from sub-bituminous B-A (Huntly); sub-bituminous C-A (Ohai); and high volatile bituminous A (Greymouth). All locations contained high vitrinite content (~85 %) with overall relatively low mineral matter observed in most samples. Mineral matter consisted of both detrital grains (quartz in matrix material) and infilling pores and fractures (clays in fusinite pores; carbonates in fractures). Average gas contents were 1.6 m3/t in the Huntly core, 4.7 m3/t in the Ohai cores, and 2.35 m3/t in the Greymouth core. The Ohai core contained more gas and was more saturated than the other cores. Carbon isotopes indicated that the Ohai gas composition was more mature, containing heavier 13C isotopes than either the Huntly or Greymouth gas samples. This indicates the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived from a biogenic (by CO2 reduction) source. The ash yield proved to be the dominant control on gas volume in all locations when the ash yield was above 10 %. Below 10 % the amount of gas variation is unrelated to ash yield. Although organic content had some influence on gas volume, associations were basin and /or rank dependant. In the Huntly core total gas content and structured vitrinite increased together. Although this relationship did not appear in the other cores, in the Ohai SC3 core lost gas and fusinite are associated with each other, while desmocollinite (unstructured vitrinite) correlated positively with residual gas in the Greymouth core. Although it is generally accepted that higher rank coals will have higher adsorption capacities, this was not seen in this data set. Although the lowest rank coal (Huntly) contains the lowest adsorption capacity, the highest adsorption capacity was not seen in the highest rank coal (Greymouth), but in the Ohai coal instead. The Ohai core acted like a higher rank coal with respect to the Greymouth coal, in terms of adsorption capacity, isotopic signatures and gas volume. Two hypothesis can be used to explain these results: (1) That a thermogenically derived gas migrated from down-dip of the SC3 and SC1 drill holes and saturated the section. (2) Rank measurements (e.g. proximate analyses) have a fairly wide variance in both the Greymouth and Ohai coal cores, thus it maybe feasible that the Ohai cores may be higher rank coal than the Greymouth coal core. Although the second hypothesis may explain the adsorption capacity, isotopic signatures and the gas volume, when the data is plotted on a Suggate rank curve, the Ohai coal core is clearly lower rank than the Greymouth core. Thus, pending additional data, the first hypothesis is favoured.
|
Page generated in 0.08 seconds