Spelling suggestions: "subject:"coatings."" "subject:"eoatings.""
321 |
Identification of Nonlinear Constitutive Properties of Damping CoatingsTidball, Mackenzie E. January 2018 (has links)
No description available.
|
322 |
Conductive polymer coating for corrosion protection of steelSoh, Tedric. January 2008 (has links)
No description available.
|
323 |
NETWORK FORMATION AND THERMO-MECHANICAL PROPERTIES OF PHOTO-CURING HYBRID COATINGSNebioglu, Ahmet 17 May 2006 (has links)
No description available.
|
324 |
Electrochemical characterization of fluoropolymers and aromatic compounds for corrosion protection applicationsCaldona, Eugene B 25 November 2020 (has links)
The consequences of corrosion are extremely costly and troublesome. In manufacturing companies, for instance, corrosion is considered a chronic problem that causes sudden disruptions in many segments of operation including processing, production, transportation, and containment of commodity products. Protection against corrosion is, therefore, important, as it helps achieve service life extension for metals and reduction in corrosion-related costs. Risk reduction for catastrophic structural failures and accident prevention can also be realized. Broader application of protective coatings and corrosion inhibiting agents remains one of the best technical practices in minimizing the effects of corrosion. This study introduces different classes of polymers and organic compounds and their potential use as new groups of corrosion preventing materials. Firstly, the use of semiluorinated perfluorocyclobutyl (PFCB) aromatic ether polymers as coatings for corrosion prevention was examined. PFCB polymers share several important characteristics with commercial fluoropolymers including chemical resistance, thermal stability, mechanical strength, and low surface energy, but with enhanced processability. Secondly, the use of very small amounts of azole-based aromatic compounds was shown to effectively inhibit corrosion in acidic medium. Compared to other inhibitor agents, these compounds have the advantage of being less complex, inexpensive, environmentally friendly, and synthesized in a one-step approach. Thirdly, the use of a tetradiglycidyl-ether-based epoxy-amine resin as corrosion resistant coating was investigated both in its intact and artificially-damaged forms. This epoxy resin, which can be infused with preform materials, has been used in the development of carbon fiber composites for aircraft applications. Finally, the capability of a superhydrophobic perfluorinated polymer nanocomposite coating to resist corrosion was evaluated. The coating also displayed superoleophilicity, which led to its additional use in separating oil-water mixtures. Standard electrochemical methods such as open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization were used to evaluate the corrosion protection performance. Several other analytical techniques were also employed to characterize the quality and structure of the protective materials and supplement the results acquired from electrochemical analyses.
|
325 |
OXIDATION RESISTANT COATINGS ON MICROCELLUAR CARBON FOAM USING SIMPLE SCALABLE TECHNIQUESNagalingam, Dakshinamurthy Sharma 12 June 2007 (has links)
No description available.
|
326 |
Corrosion Resistance Characterization of Coating Systems Used to Protect Aluminum Alloys Using Electrochemical Impedance Spectroscopy and Artificial Neural NetworksGambina, Federico 07 October 2010 (has links)
No description available.
|
327 |
Broad-Band Antireflection Coatings for Improved Grating-External-Cavity Diode Laser PerformanceGuo, Liqiang 08 1900 (has links)
In this thesis, strong optical feedback is utilized to realize broad-band wavelength tuning and to stabilize the frequency of a semiconductor diode laser in a grating-external-cavity (GEC) configuration. To reach the regime of strong optical feedback, the laser facet through which the feedback occurs has to be antireflection (AR) coated. Multi-layer AR coatings were designed using SiO2, Si3N4, SiOxNy, and a:Si for specific laser waveguide structures, and were fabricated by an electron cyclotron resonance, plasma enhanced, chemical vapor deposition (ECR-PECVD) system. The film thickness and refractive index were monitored by in situ ellipsometry during the deposition. This scheme permitted very low reflectivities, in the order of 5 x 10-4, to be readily and reproducibly obtained. The diode laser thus obtained was used in a strong feedback configuration. Light emitted from the coated facet was collimated and fed back onto the laser cavity after being reflected off a diffraction grating. The diffraction grating provides frequency selectivity, which is a desirable feature for obtaining a stable single longitudinal mode laser. The laser in this configuration oscillated in a single mode with a greater than 30 dB side mode suppression ratio and a wide tuning range. / Thesis / Master of Applied Science (MASc)
|
328 |
Hybrid Inorganic-Organic Materials: Novel Poly(Propylene Oxide) Based Ceramers, Abrasion Resistant Sol-Gel Coatings for Metals, and Epoxy-Clay Nanocomposites. With an Additional Chapter On: Metallocene Catalyzed Linear PolyethyleneJordens, Kurt 31 December 1999 (has links)
The sol-gel process has been employed to generate hybrid inorganic-organic network materials. Unique ceramers were prepared based on an alkoxysilane functionalized soft organic oligomer, poly(propylene oxide) (PPO), and tetramethoxysilane (TMOS). Despite the formation of covalent bonds between the inorganic and organic constituents, the resulting network materials were phase separated, composed of a silicate rich phase embedded in a matrix of the organic oligomer chains. The behavior of such materials was similar to elastomers containing a reinforcing filler. The study focused on the influence of initial oligomer molecular weight, functionality, and tetramethoxysilane, water, and acid catalyst content on the final structure, mechanical and thermal properties. The sol-gel approach has also been exploited to generate thin, transparent, abrasion resistant coatings for metal substrates. These systems were based on alkoxysilane functionazized diethylenetriamine (DETA) with TMOS, which generated hybrid networks with very high crosslink densities. These materials were applied with great success as abrasion resistant coatings to aluminum, copper, brass, and stainless steel. In another study, intercalated polymer-clay nanocomposites were prepared based on various epoxy networks montmorillonite clay. This work explored the influence of incorporated clay on the adhesive properties of the epoxies. The lap shear strength decreased with increasing clay content. This was due to a reduction in the toughness of the epoxy. Also, the delaminated (or exfoliated) nanocomposite structure could not be generated. Instead, all nanocomposite systems possessed an intercalated structure.
The final project involved the characterization of a series of metallocene catalyzed linear polyethylenes, produced at Phillips Petroleum. Polyolefins synthesized with such new catalyst systems are becoming widely available. The influence of molecular weight and thermal treatment on the mechanical, rheological, and thermal behavior was probed. Although the behavior of this series of metallocene polyethylenes was not unlike that of traditionally catalyzed materials, this work is one of the first comprehensive studies of these new linear polyethylenes. The main distinction between the metallocene and traditional Ziegler-Natta catalyzed polyethylenes is the narrow molecular weight distributions produced by the former (for this series of materials, 2.3< Mw  Mn <3.6). / Ph. D.
|
329 |
Thermal Analysis of a Vaporization Source for Inorganic CoatingsNutter, Brian Vincent 20 December 2000 (has links)
A thermal analysis of a conventional vaporization source by finite difference methods, including experimental validation, is presented. Such a system is common to industries whose chief concern is the precipitation of inorganic coatings. Both the physical and the model systems are comprised of a number of layers, or strata, arranged in a rectangular configuration. The model strata represent the component and deposition materials of the physical vaporization source. The symmetry and simplistic geometry of the operational source permit the use of a two-dimensional model, thereby neglecting gradients in the third dimension. The production unit, as well as the numerical model, experience various modes of heat transfer, including radiation, convection, conduction, internal generation, and phase change. Moreover, the system inputs are time-dependent.
The numerical model is subsequently compared to and validated against both simplistic case studies and the physical production system. Data collected from the operational deposition source is examined and analyzed in comparison to corresponding information generated by the numerical model. Sufficient agreement between the data sets encourages the utilization of the numerical model as a practical indicator of the subject system's behavior.
Finally, recommendations for modifications to the physical vaporization source, yielding practical improvements in temperature uniformity, are evaluated based on the predictions of the validated numerical model. The goal is the attainment of an ideally uniform temperature distribution that would correspond to highly desirable performance of the process vaporization system. / Master of Science
|
330 |
Nanocomposite of ZrO2/Polymer Thin-Film Coatings by the Ionically Self-Assembled Monolayer TechniqueRosidian, Aprillya 08 April 1998 (has links)
Nanocomposites of multilayer structures of zirconia/polymer thin-film coatings have been fabricated on quartz and single-crystal silicon substrates by the Ionically Self-Assembled Monolayer (ISAM) technique. Particle size distribution was measured to calculate the grain diameter of the zirconia particles. UV/Vis spectroscopy and ellipsometry were used to characterize the ISAM technique. SEM and AFM were used to observe the microscopic structure of the multilayer structures. Some mechanical properties were characterized by adhesion, abrasion, and nano-hardness tests. It was shown that an important distinction of this novel technique over conventional coating processes is the fabrication of excellent molecular-level uniform films with precise control of film thickness at the à ngström-level at ambient temperature and pressure conditions. It was also shown the maximum Vickers microhardness of ZrO2/polymer nanocomposite thin-film coatings prepared by this method was greater than 25 GPa. / Master of Science
|
Page generated in 0.0693 seconds