• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriétés de transport de l'oxygène dans les cobaltites Ba2Co9O14 et Ca3Co4O9+δ  : apport du SIMS et du LEIS / Oxygen transport porperties in the Ba2Co9O14 and Ca3Co4O9+δ cobaltites : contribution of SIMS and LEIS

Thoréton, Vincent 04 December 2012 (has links)
Ce travail porte principalement sur la caractérisation des propriétés de transport de l'oxygène dans deux cobaltites, Ba2Co9O14 et Ca3Co4O9+δ, matériaux prometteurs comme cathode de pile à combustible à oxyde solide ou anode d’électrolyseur haute-température. Une grosse partie du travail a concerné la mise en place de la mesure de profils de diffusion de l'oxygène par échange isotopique et analyse SIMS. L'étude a ainsi démontré que ces deux matériaux sont des conducteurs mixtes ionique/électronique.Alors que les paramètres de transport mesurés sur Ba2Co9O14sont relativement faibles, les phases dérivées de Ca3Co4O9+δ présentent des coefficients d'échange en surface du même ordre de grandeur que ceux des matériaux de cathode les plus performants aujourd'hui. La structure de Ca3Co4O9+δ est constituée de l'alternance de couches Ca2CoO3-δ de type NaCl et de couches hexagonales CoO2. L'étude de céramiques texturées a démontré une diffusion facilitée parallèlement aux couches, probablement au sein des couches de type NaCl, lacunaires en oxygène. Par ailleurs, les premières mesures par LEIS ont montré la présence préférentielle de calcium à l'extrême surface du matériau. / The main objective of this work was the characterization of the oxygen transport properties of oxygen in two cobaltite materials, Ba2Co9O14 et Ca3Co4O9+δ, promising as SOFC cathode or SOEC anode. A significant part of this work was devoted to the set-up of oxygen diffusion profiles measurement by combining isotopic exchange and SIMS analysis. It has been demonstrated that these ceramics are mixed ionic–electronic conducting (MIEC) materials. Even though Ba2Co9O14's oxygen transport coefficients are relatively low, Ca3Co4O9+δ and derivatives show surface exchange coefficients close to those encountered in the today's most promising cathode materials.Ca3Co4O9+δ is built upon the stacking of Ca2CoO3-δ rock-salt layers and CoO2 hexagonal layers. The study of textured ceramics showed a preferential diffusion along the layers, probably inside the rock-salt layers which contain oxygen vacancies. In addition, first LEIS measurements showed that the uppermost atomic layer of the structure is mainly made up of calcium atoms.
2

Nouvelles électrodes pour pile à combustible à oxyde solide et électrolyseur à haute température / New solid oxide fuel cells and high temperature electrolyser’s electrodes

Flandre, Xavier 20 December 2016 (has links)
Dans le contexte actuel, les ressources en énergie fossiles diminuent et deviennent de plus en plus couteuses, se pose aussi le problème de l’environnement. Dans ce cadre, les piles à combustible à oxydes solides (Solid Oxide Fuel Cell en anglais, SOFC) sont une source d’énergie propre et alternative très prometteuse. Utilisé de façon réversible, ce système peut également permettre le stockage de l’électricité produite de façon intermittente via l’électrolyse de l’eau. Néanmoins, plusieurs verrous technologiques restent encore à lever en matière de performances et de durabilité des matériaux actuellement utilisés, notamment pour ce qui concernent les matériaux d’électrode. Dans ce travail de thèse de doctorat, notre contribution a porté sur deux matériaux de cathode de SOFC, Ba2Co9O14 et Ca3Co4O9+δ, et des composés dérivés de La4Ti2O10 pouvant présenter un intérêt comme matériau d’anode. Nous nous sommes intéressés plus particulièrement à la compréhension des mécanismes physico-chimiques intervenant au sein de ces matériaux en faisant appel à la spectroscopie d’impédance. Pour les cobaltites, cette étude a permis de mettre en évidence les paramètres limitants les performances électrochimiques. Elle aidera à l’optimisation de futures cellules complètes plus performantes. Pour les phases dérivées de La4Ti2O10, une étude par diffusion des neutrons a permis de confirmer les mécanismes de diffusion de l’oxygène au sein de ces matériaux. Leurs conductivités et propriétés catalytiques restent néanmoins insuffisantes pour pouvoir espérer les utiliser comme matériau d’anode, au contraire d’autres titanates de lanthane de structure perovskite lamellaire. / In the current context, fossil energy resources decrease and become more expensive, in addition to environmental concern. In this frame, solid oxide fuel cells (SOFC) are a promising green alternative energy source. Reversibly used, this system can also allow storage of electricity produced intermittently through the electrolysis of water. However, several bottlenecks still remain in terms of performances and stability of materials currently used to improve their lifetime and decrease their working temperature. In this doctoral thesis, our contribution focused on two cathode materials for SOFCs, Ba2Co9O14 and Ca3Co4O9+δ, and compounds derived from La4Ti2O10 which may be relevant as anode material. Our study mainly focused on the understanding of the physicochemical mechanisms involved in these materials by using impedance spectroscopy. For cobaltites, this study has led to the identification of the limiting parameters and will help the future optimization of complete stacks with better performances. For the La4Ti2O10 derived phases with the cuspidine structure, a neutron scattering study confirmed the oxygen diffusion mechanisms in these materials. However, their conductivity and catalytic properties remain insufficient to hope to use these compounds as SOFC’s anode, unlike other lanthanum titanates which display a layered perovskite structure.
3

Synthèse de nouveaux catalyseurs nanostructurés par dépôts physiques à base de pérovskite de lanthane / New nanostructured catalysts with pérovskites of lanthanum obtained by processes of physical deposit

Vilasi, Pauline 20 December 2018 (has links)
Ce travail de thèse est issu d’une collaboration entre les laboratoires de recherche FEMTO-ST de l’université technologique de Belfort-Montbéliard et IRCELYON de l’université Claude Bernard à Villeurbanne. Les objectifs de cette étude portent sur la faisabilité d’élaborer par pulvérisation cathodique magnétron des films minces de cobaltite de lanthane nanostructurés. En effet, ces films présentent des propriétés catalytiques intéressantes pour l’oxydation des composés organiques volatiles comme le propène (C3H6) ou le monoxyde de carbone (CO) qui constituent la principale source de pollution de l’air. Il sera montré dans un premier temps que les cobaltites de lanthane de formule LaCoO3 ne sont pas efficaces pour ce type d’application. La composition chimique de ce matériau sera donc modifiée en y incorporant de l’argent de manière à faire varier les propriétés physico-chimiques des films et d’augmenter leurs performances catalytiques. La morphologie des films est directement impactée par l’introduction de Ag puisqu’elle évolue d’un système dense à un système « nanofilaire ». Une autre série de dépôts sera également élaborée et testée en catalyse constituée de cobaltites de lanthane dopées avec de l’argent mais aussi du cérium. On retiendra alors que les films de LaCoO3 + Ag sont plutôt efficaces et prometteurs puisqu’ils présentent des performances catalytiques se rapprochant de celles du platine (catalyseur de référence). Néanmoins, bien que les films aient toujours cette morphologie nanofilaire, les compositions chimiques des films élaborés à base de LaCoO3 + Ag + Ce doivent être optimisées afin d’augmenter leurs activités catalytiques. / This work was made in the frame of a scientific research relationships between the laboratory FEMTO-ST of the Technological University of Belfort-Montbéliard and the laboratory IRCELYON of the Claude Bernard University of Villeurbanne. This study aims at characterizing the feasibility of nanostructured lanthanum cobaltite thin films via magnetron sputtering. Indeed, it is well known these materials have interesting catalytic properties regarding the oxidation of volatile organic compounds such as propene (C3H6) or carbon monoxide (CO), the latter being the main source of air pollution. First, it has been shown that lanthanum cobaltites of formula LaCoO3 are not efficient for this type of application. The chemical composition of this material was then modified by incorporating silver so as to vary the physicochemical properties of the films and increase their catalytic performance. In consequence, the morphology of the films was directly impacted by the introduction of Ag since it evolved from a dense system to a "nanowire" system. Another series of deposits based on cobaltite modified by both silver and cerium additions have been also developed and tested during catalytic tests. It should be noted that the Ag containing thin films of LaCoO3 are rather efficient and then promising since they have catalytic performances close to those of platinum (the reference catalyst). Concerning the Ag and Ce containing perovskite films, although they still have this peculiar nanowired morphology, their chemical compositions have to be optimized in order to increase their catalytic activities.
4

Magnetism in Complex Oxides Probed by Magnetocaloric Effect and Transverse Susceptibility

Bingham, Nicholas Steven 01 January 2013 (has links)
Magnetic oxides exhibit rich complexity in their fundamental physical properties determined by the intricate interplay between structural, electronic and magnetic degrees of freedom. The common themes that are often present in these systems are the phase coexistence, strong magnetostructural coupling, and possible spin frustration induced by lattice geometry. While a complete understanding of the ground state magnetic properties and cooperative phenomena in this class of compounds is key to manipulating their functionality for applications, it remains among the most challenging problems facing condensed-matter physics today. To address these outstanding issues, it is essential to employ experimental methods that allow for detailed investigations of the temperature and magnetic field response of the different phases. In this PhD dissertation, I will demonstrate the relatively unconventional experimental methods of magnetocaloric effect (MCE) and radio-frequency transverse susceptibility (TS) as powerful probes of multiple magnetic transitions, glassy phenomena, and ground state magnetic properties in a large class of complex magnetic oxides, including La0.7Ca0.3-xSrxMnO3 (x = 0, 0.05, 0.1, 0.2 and 0.25), Pr0.5Sr0.5MnO3, Pr1-xSrxCoO3 (x = 0.3, 0.35, 0.4 and 0.5), La5/8−xPrxCa3/8MnO3 (x = 0.275 and 0.375), and Ca3Co2O6. First, the influences of strain and grain boundaries, via chemical substitution and reduced dimensionality, were studied via MCE in La0.7Ca0.3-xSrxMnO3. Polycrystalline, single crystalline, and thin-film La0.7Ca0.3-xSrxMnO3 samples show a paramagnetic to ferromagnetic transition at a wide variety of temperatures as well as an observed change in the fundamental nature of the transition (i.e. first-order magnetic transition to second order magnetic transition) that is dependent on the chemical concentration and dimensionality. Systematic TS and MCE experiments on Pr0.5Sr0.5MnO3 and Pr0.5Sr0.5CoO3 have uncovered the different nature of low-temperature magnetic phases and demonstrate the importance of coupled structural/magnetocrystalline anisotropy in these half-doped perovskite systems. These findings point to the existence of a distinct class of phenomena in transition-metal oxide materials due to the unique interplay between structure and magnetic anisotropy, and provide evidence for the interplay of spin and orbital order as the origin of intrinsic phase separation in manganites. While Pr0.5Sr0.5MnO3 provides important insights into the influence of first- and second-order transitions on the MCE and refrigerant capacity (RC) in a single material, giving a good guidance on the development of magnetocaloric materials for active magnetic refrigeration, Pr1-xSrxCoO3 provides an excellent system for determining the structural entropy change and its contribution to the MCE in magnetocaloric materials. We have demonstrated that the structural entropy contributes significantly to the total entropy change and the structurally coupled magnetocrystalline anisotropy plays a crucial role in tailoring the magnetocaloric properties for active magnetic refrigeration technology. In the case of La5/8−xPrxCa3/8MnO3, whose bulk form is comprised of micron-sized regions of ferromagnetic (FM), paramagnetic (PM), and charge-ordered (CO) phases, TS and MCE experiments have evidenced the dominance of low-temperature FM and high-temperature CO phases. The "dynamic" strain liquid state is strongly dependent on magnetic field, while the "frozen" strain-glass state is almost magnetic field independent. The sharp changes in the magnetization, electrical resistivity, and magnetic entropy just below the Curie temperature occur via the growth of FM domains already present in the material, even in zero magnetic field. The subtle balance of coexisting phases and kinetic arrest are also probed by MCE and TS experiments, leading to a new and more comprehensive magnetic phase diagram. A geometrically frustrated spin chain compound Ca3Co2O6 provides an interesting case study for understanding the cooperative phenomena of low-dimensional magnetism and topological magnetic frustration in a single material. Our MCE studies have yielded new insights into the nature of switching between multi-states and competing interactions within spin chains and between them, leading to a more comprehensive magnetic phase diagram.
5

Développement et caractérisation de nouveaux matériaux d’électrodes pour pile à combustible à oxyde solide (SOFC) : des titanates de lanthane de structure cuspidine aux cobaltites / Development and characterization of new electrode materials for solid oxide fuel cell (SOFC) : from lanthanum titanates of cuspidine structure to cobaltites

Kehal, Ibtissam 24 February 2015 (has links)
Dans le contexte énergétique actuel, les piles à combustible à oxyde solide sont très prometteuses comme source d’énergie alternative pour la production d’électricité. Quelques verrous restent cependant à lever pour améliorer leur durabilité, notamment en termes de matériaux d’électrode. Ce travail de thèse s’est intéressé à la caractérisation de nouveaux matériaux d’anode et de cathode. La substitution partielle du titane par du vanadium dans le titanate de lanthane La4Ti2O10 de structure cuspidine a permis de conduire à des matériaux d’anode prometteurs. Des résistances spécifiques surfaciques (ASR, Area Specific Resistance) de l’ordre de 0,2 W.cm2 ont été obtenues à 750°C sous hydrogène. Au niveau de la cathode, nos recherches ont porté sur deux types de cobaltites : une pérovskite de formulation Ba1-xCo0,9Fe0,2Nb0,1O3-d avec x = 0 et 0,1 et un matériau innovant Ba2Co9O14. Dans les deux cas, après optimisation de la microstructure des électrodes, les ASR sont inférieure à 0,1 W.cm2 à 700°C. / In the current energy context, solid oxide fuel cells hold great promise as an alternative energy source for electricity generation. However, bottlenecks remain to improve their sustainability, particularly in terms of electrode materials. This work focused on the characterization of new anode and cathode materials. The partial substitution of titanium by vanadium in the lanthanum titanate La4Ti2O10 of cuspidine structure has led to promising anode materials with Aera Specific Resistance (ASR) of the order of 0.2 W.cm2 at 750 ° C under hydrogen. At the cathode, our research has focused on two types of cobaltites: a perovskite Ba1-xCo0,9Fe0,2Nb0,1O3-d with x = 0 and 0.1 and an innovative material Ba2Co9O14. In either case, after optimization of the microstructure of the electrodes, ASR less than 0.1 W.cm2 at 700 ° C were obtained.
6

First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

Salawu, Omotayo Akande 15 May 2017 (has links)
Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated. We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration. The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state. For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are explained on a microscopic level. Furthermore, we consider antisite defects as they may modify the electronic and O migration properties but are rarely studied in double perovskite oxides. It turns out that O vacancy formation is significantly easier in PrBaCo2O5.5 than in GdBaCo2O5.5, the difference in formation energy being hardly modified by antisite defects. Finally, having established that the O vacancy formation energy is significantly lower in PrBaCo2O5.5 than in GdBaCo2O5.5, we study the O Frenkel energy and migration of O ions in PrBa(Co/Fe)2O5.5. The electronic structure and charge redistribution during defect formation are analyzed. We demonstrate that Co↔Fe substitution strongly affects the formation of defects and, consequently, the O migration. The low O Frenkel energy points to a high concentration of O vacancies. The migration of the O ions shows a distinct anisotropy.
7

Matériaux catalytiques innovants pour la réalisation d'électrodes à air réversibles : applications aux accumulateurs métal-air à haute densité d'énergie / Innovative catalytic materials as reversible air electrodes : application to the high energy density metal air batteries

Abidat, Ismail 14 December 2017 (has links)
Les accumulateurs métal-air possèdent des densités d'énergie théoriques très élevées, et sont considérés comme de candidats idéaux en vue d'une rupture technologique dans les domaines des véhicules électriques et du stockage stationnaire à grande échelle. Un accumulateur métal-air opérant dans un électrolyte aqueux est peu coûteux, plus sûr, recyclable et a une faible empreinte environnementale. Ainsi, l'aboutissement de cette technologie naissante serait une alternative crédible aux accumulateurs Li-ion qui ont atteint un niveau de maturité technologique. Toutefois, le principal verrou scientifique à lever pour amener ces systèmes dans une réalité commerciale, concerne le développement d'électrodes à air bifonctionnelles. Cela nécessite la conception de catalyseurs peu coûteux et performants vis-à-vis des réactions de réduction (décharge) et de dégagement du dioxygène (charge). Les études ont porté sur la préparation de dérivés du graphène, de cobaltites et de matériaux composites carbone/oxyde. Des caractérisations physicochimiqes ont permis d'accéder à une meilleure compréhension des effets induits par leur composition, leurs propriétés électroniques et morphostructurales. Des expériences ont été conduites pour séparer les effets induits par la nature chimique du support carboné de ceux résultant de l'incorporation d'hétéroatomes ou des propriétés de surface des cobaltites. En outre, une partie de ce travail a été consacrée à l'étude de l'effet de la nature chimique de l'électrolyte (LiOH et K2ZnOH4) sur l'activité et la stabilité des nanoparticules de Co3O4 supportées sur oxyde de graphène réduit et bi-dopé à l'azote et au soufre lors l'électrocatalyse du dioxygène. / Rechargeable metal-air batteries exhibit high theoretical energy densities, and could be an ideal candidate for a technological breakthrough in the field of electric vehicles and large-scale stationary energy storage. Aqueous metal-air batteries are low-cost, safe, recyclable, and have environmental footprint. Thus, the outcome of this emerging technology could offer a credible alternative to Li-ion batteries, which are reaching a technology readiness level. However, the main scientific challenge to bring these systems into a commercial reality concerns the development of bifunctional air electrodes. This requires the design of low-cost, stable and efficient catalysts for both oxygen reduction (discharge) and oxygen evolution reactions (charge). The present work focuses on various investigations of electrocatalysts derived from graphene, cobaltites and carbon/oxide composites. The main objective was the better understanding of the effects induced by their composition, their electronic and morphostructural properties on the catalytic activity and stability of materials towards oxygen electrocatalysis. Experiments were thereby conducted in order to be able to separate effects induced by chemical nature of the carbon substrate from those resulted in the incorporation of heteroatoms or from the spinel cobaltites surface properties. In addition, a part of this study dealt with the impact of the chemical nature of the electrolyte (LiOH and K2ZnOH4) encountered in real aqueous alkali Li-air and Zn-air batteries on the activity and stability of Co3O4/N;S-RGO nanocomposites towards oxygen electrocatalysis.
8

Etude de la décomposition spinodale de cobaltite de fer sur couches minces / Study of spinodal decomposition of iron cobaltite on thin films

Bui, Thi Mai Anh 18 May 2015 (has links)
Ces travaux de thèse avaient pour objectif d'étudier les effets du phénomène de décomposition spinodale sur l'évolution structurale et microstructurale de couches minces de cobaltites dont la composition se trouve dans la lacune de miscibilité du système de CoFe2O4 - Co3O4. Dans un premier temps, nous avons élaboré les couches minces par pulvérisation cathodique radiofréquence en configuration magnétron à partir d'une cible céramique de composition moyenne Co1.73Fe1.27O4. Les dépôts à forte pression d'argon ou à puissance RF élevée favorisent la formation de couches contenant une phase monoxyde associée à une phase spinelle. L'obtention de la phase monoxyde dans ces couches est probablement due en partie, à la réduction de la surface de la cible en raison d'un fort bombardement, sans pour autant exclure la présence d'un phénomène physique lié à la thermalisation des atomes d'oxygène. Nous avons optimisé une condition de dépôt à 0.5 Pa - 20 W ce qui permet un compromis alliant une faible quantité de phase monoxyde dans la couche et des vitesses de dépôt qui demeurent acceptables. La décomposition spinodale a été mise en évidence sur les couches déposées à cette condition, puis traitées à 600 °C pendant différentes durées. Les caractérisations par diffraction des rayons X, spectroscopie Raman et mesures magnétiques VSM, ont confirmé la formation progressive d'un système de deux phases, une riche en cobalt et l'autre riche en fer. Néanmoins, la formation des zones périodiques correspondant à ces deux phases n'a pas été observée sur les couches décomposées. Ces deux phases ne présentent en effet qu'une différence très faible au niveau de leur structure. Enfin, les études sur les couches traitées à plus basses températures (par exemple à 450 °C) montrent des évolutions similaires à celles observées lors de traitements à 600 °C. La transformation spinodale semble s'initier par une migration des cations divalents vers les sites tétraédriques et des cations trivalents vers les sites octaédriques. La structure spinelle tend donc à devenir normale avant que la séparation en deux phases spinelles s'effectue selon un mécanisme de transformation spinodale. / This work aimed to study the effects of spinodal decomposition process on structural and microstructural evolution of cobaltite thin films whose composition is in the miscibility gap of CoFe2O4 - Co3O4 system. At the first time, thin films were elaborated by RF magnetron sputtering from a ceramic target with average composition of Co1.73Fe1.27O4. Deposits at high argon pressure or high RF power favor the formation of thin films containing an oxide phase associated with a spinel phase. The oxide phase obtained in these films is probably in part due to the reduction of the target surface owing to a strong bombardment, without excluding the presence of a physical phenomenon related to the thermalization of oxygen atoms. Deposition conditions were optimized at 0.5 Pa - 20 W. That allows a compromise between a small amount of oxide phase in the thin films and an acceptable deposition rate. Spinodal decomposition has been demonstrated on the thin films deposited in this condition and post-annealed at 600 ° C for various times. The characterizations by X-ray diffraction, Raman spectroscopy and VSM magnetic measurements, have confirmed the gradual formation of a two-phase system made of a cobalt-rich phase and an iron-rich phase. However, the formation of periodic zones, corresponding to these two phases, was not observed on the decomposed thin films. These two phases exhibit in fact a very small difference in their structure. Finally, the studies on thin films annealed at lower temperatures (for example at 450 ° C) showed evolutions similar to those observed during treatment at 600 ° C. Spinodal transformation seems to be initiated by a migration of divalent cations into the tetrahedral sites and trivalent cations into octahedral sites. The spinel structure thus tends to turn into a normal structure, before the separation into two spinel phases, due to the spinodal transformation.
9

Resonant and high resolution photoemission of rare-earth cobalt oxides

Rafique, Hafiz Muhammad January 2010 (has links)
LnBaCo2O5+δ (Ln-112) where Ln = lanthanide element; 0 ≤ δ ≤1 and LnBaCo4O7+δ (Ln-114) are highly correlated cobalt oxides. Synchrotron photoemission spectroscopy of LnBaCo2O5+δ (Ln = Gd, Dy, Dy1-xTbx) and LnBaCo4O7 (Ln = Yb) has been undertaken at the UK Synchrotron Radiation Source (Daresbury Laboratory).During the photoemission experiments, the samples were observed to be contaminated due to residual gases inside the main vacuum chamber. The surface degradation of the samples is studied using the difference spectra generated from the valence band spectra of freshly scraped and contaminated samples and the nature of contaminated species on these samples is identified in the light of the reviewed literature. High-resolution photoemission is carried out to study the metal-insulator (MI) transition in double perovskites LnBaCo2O5+δ (Ln = Gd, Dy, Dy1-xTbx - Ln-112; 0 ≤ δ ≤ 1) as a function of temperature. The high-resolution photoemission results of single crystal samples of GdBaCo2O5.5, DyBaCo2O5.5 and Dy1-xTbxBaCo2O5+δ show that the temperature-based MI transitions in these compounds occur in the 300-400 K temperature range. A post-growth oxygen annealing treatment for as-grown single crystals of Ln-112 is necessary, achieving oxygen contents close to 5.50, to observe a marked nonmetal-to-metal transition. Resonant photoemission is used to identify the atomic parentage of the valence band states. A comparison of the electronic structure of LnBaCo2O5+δ (Ln = Gd, Dy, Dy1-xTbx - Ln-112; 0 ≤ δ ≤ 1) and LnBaCo4O7 (Ln = Yb - Ln-114) single-crystal surfaces is made using synchrotron photoemission spectroscopy. In both cases, the states close to the Fermi energy are found to be of mixed Co 3d/O 2p character, and the comparison allows identification of states due to low spin Co³⁺ in octahedral environments. The contributions from Ln elements to the valence band are found at higher binding energies.
10

Synthesis and Electrochemical Evaluation of Perovskite related oxide for Active Cathode for Solid Oxide Fuel Cells (SOFCs)

Kluczny, Maksymilian January 2017 (has links)
Solid oxide fuel cells are used as stationary power plants for electricity production. Despite having a very high efficiency of 90% they haven’t gained a world-wide commercial usage, due to their very high operating temperatures, and high production cost. However, there is a lot of ongoing research with the aim of developing intermediate-temperature solid oxide fuel cells (IT-SOFCs) that could operate at temperatures below 800°C. Cathodes are the most studied components of IT-SOFCs, since decreasing operating temperature results in slow oxygen reduction reaction(ORR) kinetics and large polarization losses. Perovskite related metal oxides have become very popular materials that could make suitable cathodes for IT-SOFCs. In this work an evaluation of several materials belonging to three different material groups have been studied: single layer perovskites, with a general formula of ABO3, double layer perovskites, with a general formula of AA’B2O6 and Ruddlesden-Popper phase, with a general formula of An+1BnO3n+1. Power generating capabilities of those materials have been studied on an electrolyte supported cell, cathode/LSGM9182/Ni-Fe. IR drop and overpotential of the cathode was measured and activation energy of the ORR for each material has been calculated. The double layer perovskite cobaltites offer a significant drop in overpotential, increase in conductivity compared to their single layer counterpart, while being able to generate significant amount of power. Ruddlesden-Popper phase materials offer the lowest activation energy values amongst the researched materials, but offer limited power generation values in the setup they were tested. Both of double layer perovskites and Ruddlesden-Popper based materials have opportunities for their performance to be improved. / Fastoxidbränsleceller används som stationära kraftverk för elproduktion. Trots att de har en mycket hög effektivitet på 90% har de inte fått en världsomspännande kommersiell användning på grund av deras mycket höga driftstemperaturer och hög produktionskostnad. Det är emellertid mycket pågående forskning med sikte på att utveckla intermediär temperatur fastoxidbränsleceller (IT-SOFC) som kan fungera vid temperaturer under 800 ° C. Katod är de mest studerade komponenterna i IT-SOFC, eftersom minskad driftstemperatur resulterar i kinetik med långsam syrereduktion (ORR) och stora polarisationsförluster. Perovskite-relaterade metalloxider har blivit mycket populära material som kan göra lämpliga katoder för IT-SOFC. I detta arbete har en utvärdering av flera material som hör till tre olika materialgrupper studerats: singelskikt perovskiter, med en generell formel för ABO3, dubbelskikt perovskiter, med en generell formel av AA'B2O6 och Ruddlesden-Popper-fasen med en allmän formel för An + 1BnO3n + 1. Effektgenereringskapaciteten hos dessa material har studerats på en elektrolytbärbar cell, katod / LSGM9182 / Ni-Fe. IR-droppe och överpotential hos katoden mättes och aktiveringsenergin för ORR för varje material har beräknats. Dubbelskiktet perovskit koboltiter ger en signifikant minskning av överpotentialen, ökad ledningsförmåga jämfört med deras enkelskikt motpart, samtidigt som man kan generera betydande mängden kraft. Ruddlesden-Popper-fasmaterial erbjuder de lägsta aktiveringsenergivärdena bland de undersökta materialen, men erbjuder begränsade kraftproduktionsvärden i den inställning de testades. Både av dubbelskiktet perovskiter och Ruddlesden-Popper-baserade material har möjligheter att förbättra deras prestanda.

Page generated in 0.0474 seconds