Spelling suggestions: "subject:"pode saturne"" "subject:"pode daturne""
1 |
Development of a near-wall domain decomposition method for turbulent flowsJones, Adam January 2016 (has links)
In computational fluid dynamics (CFD), there are two widely-used methods for computing the near-wall regions of turbulent flows: high Reynolds number (HRN) models and low Reynolds number (LRN) models. HRN models do not resolve the near-wall region, but instead use wall functions to compute the required parameters over the near-wall region. In contrast, LRN models resolve the flow right down to the wall. Simulations with HRN models can take an order of magnitude less time than with LRN models, however the accuracy of the solution is reduced and certain requirements on the mesh must be met if the wall function is to be valid. It is often difficult or impossible to satisfy these requirements in industrial computations. In this thesis the near-wall domain decomposition (NDD) method of Utyuzhnikov (2006) is developed and implemented into the industrial code, Code_Saturne, for the first time. With the NDD approach, the near-wall regions of a fluid flow are removed from the main computational mesh. Instead, the mesh extends down to an interface boundary, which is located a short distance from the wall, denoted y*. A simplified boundary layer equation is used to calculate boundary conditions at the interface. When implemented with a turbulence model which can resolve down to the wall, there is no lower limit on the value of y*. There is a Reynolds number-dependent upper limit on y*, as there is with HRN models. Thus for large y*, the model functions as a HRN model and as y*→ 0 the LRN solution is recovered. NDD is implemented for the k−ε and Spalart-Allmaras turbulence models and is tested on five test cases: a channel flow at two different Reynolds numbers, an annular flow, an impinging jet flow and the flow in an asymmetric diffuser. The method is tested as a HRN and LRN model and it is found that the method behaves competitively with the scalable wall function (SWF) on simpler flows, and performs better on the asymmetric diffuser flow, where the NDD solution correctly captures the recirculation region whereas the SWF does not. The method is then tested on a ribbed channel flow. Particular focus is given to investigating how much of the rib can be excluded from the main computational mesh. It is found that it is possible to remove 90% of the rib from the mesh with less than 2% error in the friction factor compared to the LRN solution. The thesis then focuses on the industrial case of the flow in an annulus where the inner wall, referred to as the pin, has a rib on its surface that protrudes into the annulus. Comparison is made between CFD calculations, experimental data and empirical correlations. It is found that the experimental friction factors are significantly larger than those found with CFD, and that the trend in the friction factor with Reynolds number found in the experiments is different. Simulations are performed to quantify the effect that a non-smooth surface finish on the pin and rib surface has on the flow. This models the situation that occurs in an advanced gas-cooled nuclear reactor, when a carbon deposit forms on the fuel pins. The relationship between the friction factor and surface finish is plotted. It is demonstrated that surface roughness left over by the manufacturing process in the experiments is not the source of the discrepancy between the experimental and CFD results.
|
2 |
Études fines des échanges énergétiques entre les bâtiments et l'atmosphère urbaine / Fine study of energy exchanges between buildings and urban atmosphereDaviau, Noëlie 18 January 2016 (has links)
Le travail réalisé dans le cadre de cette thèse porte sur l'effet que les bâtiments exercent sur l'atmosphère urbaine et notamment sur les échanges énergétiques qui s'opèrent entre les deux systèmes. Afin de modéliser plus finement les effets thermiques du bâtiment sur les écoulements atmosphériques lors de simulations réalisées par le logiciel de CFD Code_Saturne, nous procédons au couplage de cet outil avec le modèle de bâtiment BuildSysPro. Cette bibliothèque fonctionne sous Dymola et peut calculer des matrices descriptives du bâtiment utilisables ensuite en dehors du logiciel. Ce sont donc ces matrices qui sont utilisées pour le couplage par l'intermédiaire d'un code assurant l'échange de données entre les calculs de thermique du bâtiment et ceux de CFD. Après une revue des phénomènes physiques en lien avec l'atmosphère urbaine et des modèles existants, nous nous intéressons aux interactions entre l'atmosphère et le milieu urbain, notamment les bâtiments. Ceux-ci peuvent avoir un impact sur les écoulements aussi bien dynamique, en tant qu'obstacles, que thermique, via leurs températures de parois. Parallèlement à la mise en place du couplage entre les deux logiciels, nous étudions les données de la campagne de mesures EM2PAU que nous utilisons pour notre validation. EM2PAU, réalisée en 2011 à Nantes, représente une rue canyon idéalisée par deux rangées de conteneurs. La campagne a pour spécificité de prendre simultanément les mesures de températures d'air et de parois ainsi que les vitesses du vent de référence et des écoulements dans le canyon par un anémomètre sonique placé à 10 m d'altitude et six autres positionnés en six emplacements dans le canyon. Nous cherchons donc à mettre en évidence les effets dynamiques et thermiques des bâtiments sur les écoulements à partir des résultats de cette campagne, pour ensuite les simuler. Puis la modélisation numérique des écoulements sur le domaine de EM2PAU est réalisée. L'objectif de ce travail est de mettre en évidence l'influence des effets thermiques des parois sur les flux atmosphériques. Nous comparons des simulations avec différentes méthodes pour donner les valeurs des températures de surface des conteneurs. La première méthode consiste à imposer ces températures d'après les mesures ; ainsi la température de chaque paroi sera fixée à la température de surface mesurée lors de l'instrumentation de EM2PAU. Quant à la deuxième méthode, on impose la température de l'air extérieur mesurée à l'instant simulé à toutes les parois des conteneurs, afin de créer un cas où l'on n'observe que peu ou pas d'échanges de chaleur. Enfin la troisième méthode est la simulation couplée de Code_Saturne et BuildSysPro. Les résultats des différentes simulations sont alors comparés afin de distinguer les effets thermiques des parois des bâtiments sur les écoulements d'air. Nous observons que les effets dynamiques sont primordiaux et peuvent engendrer des vitesses verticales de l'écoulement dans le canyon de l'ordre plusieurs mètres par seconde, tandis que des écarts de températures de surface de l'ordre de 15°C peuvent modifier les vitesses verticales du vent de moins de 0, 5 mètres par seconde. Si ces effets thermiques sont difficiles à isoler sur des mesures en raison des autres phénomènes susceptibles d'influencer les écoulements atmosphériques, les études numériques peuvent toutefois mieux quantifier ces différences / This thesis work is about the effect of buildings on the urban atmosphere and more precisely the energetic exchanges that take place between these two systems. In order to model more finely the thermal effects of buildings on the atmospheric flows in simulations run under the CFD software Code_Saturne, we proceed to couple this tool with the building model BuildSysPro. This library is run under Dymola and can generate matrices describing the building thermal properties that can be used outside this software. In order to carry out the coupling, we use these matrices in a code that allows the building thermal calculations and the CFD to exchange their results. After a review about the physical phenomena and the existing models, we explain the interactions between the atmosphere and the urban elements, especially buildings. The latter can impact the air flows dynamically, as they act as obstacles, and thermally, through their surface temperatures. At first, we analyse the data obtained from the measurement campaign EM2PAU that we use in order to validate the coupled model. EM2PAU was carried out in Nantes in 2011 and represents a canyon street with two rows of four containers. Its distinctive feature lies in the simultaneous measurements of the air and wall temperatures as well as the wind speeds with anemometers located on a 10 m-high mast for the reference wind and on six locations in the canyon. This aims for studying the thermal influence of buildings on the air flows. Then the numerical simulations of the air flows in EM2PAU is carried out with different methods that allow us to calculate or impose the surface temperature we use, for each of the container walls. The first method consists in imposing their temperatures from the measurements. For each wall, we set the temperature to the surface temperature that was measured during the EM2PAU campaign. The second method involves imposing the outdoor air temperature that was measured at a given time to all the surfaces, reducing every heat exchange to almost zero. The third method at last is the coupled simulation of Code_Saturne and BuildSysPro where BuildSysPro calculates the wall temperature from the Code_Saturne data. . The results of these different ways of modelling the wall temperatures are then compared in order to show the thermal effects of building wall heating on the air flows. We notice that the dynamic effects are dominant and can generate vertical wind speed that can pass several meters per second. On the other hand, differences of surface temperatures higher than 15°C can influence the vertical wind speed for less than 0.5 meters per second. These thermal effects are not easily highlighted with measured data because of the other phenomena that can impact the air flows. However they can be quantified with numerical studies
|
Page generated in 0.0436 seconds