Spelling suggestions: "subject:"conergy exchange"" "subject:"coenergy exchange""
1 |
Overview of WECNoF/CREST project from 2003 to 2005Ohta, Takeshi 26 January 2006 (has links)
主催:JST/CREST,Vrije University, ALTERRA, IBPC
|
2 |
Hydrometeorological behaviour of pine and larch forests in eastern SiberiaHamada, Shuko, Ohta, Takeshi, Hiyama, Tetsuya, Kuwada, Takashi, Takahashi, Atsuhiro, Maximov, Trofim.C 01 1900 (has links)
No description available.
|
3 |
Études fines des échanges énergétiques entre les bâtiments et l'atmosphère urbaine / Fine study of energy exchanges between buildings and urban atmosphereDaviau, Noëlie 18 January 2016 (has links)
Le travail réalisé dans le cadre de cette thèse porte sur l'effet que les bâtiments exercent sur l'atmosphère urbaine et notamment sur les échanges énergétiques qui s'opèrent entre les deux systèmes. Afin de modéliser plus finement les effets thermiques du bâtiment sur les écoulements atmosphériques lors de simulations réalisées par le logiciel de CFD Code_Saturne, nous procédons au couplage de cet outil avec le modèle de bâtiment BuildSysPro. Cette bibliothèque fonctionne sous Dymola et peut calculer des matrices descriptives du bâtiment utilisables ensuite en dehors du logiciel. Ce sont donc ces matrices qui sont utilisées pour le couplage par l'intermédiaire d'un code assurant l'échange de données entre les calculs de thermique du bâtiment et ceux de CFD. Après une revue des phénomènes physiques en lien avec l'atmosphère urbaine et des modèles existants, nous nous intéressons aux interactions entre l'atmosphère et le milieu urbain, notamment les bâtiments. Ceux-ci peuvent avoir un impact sur les écoulements aussi bien dynamique, en tant qu'obstacles, que thermique, via leurs températures de parois. Parallèlement à la mise en place du couplage entre les deux logiciels, nous étudions les données de la campagne de mesures EM2PAU que nous utilisons pour notre validation. EM2PAU, réalisée en 2011 à Nantes, représente une rue canyon idéalisée par deux rangées de conteneurs. La campagne a pour spécificité de prendre simultanément les mesures de températures d'air et de parois ainsi que les vitesses du vent de référence et des écoulements dans le canyon par un anémomètre sonique placé à 10 m d'altitude et six autres positionnés en six emplacements dans le canyon. Nous cherchons donc à mettre en évidence les effets dynamiques et thermiques des bâtiments sur les écoulements à partir des résultats de cette campagne, pour ensuite les simuler. Puis la modélisation numérique des écoulements sur le domaine de EM2PAU est réalisée. L'objectif de ce travail est de mettre en évidence l'influence des effets thermiques des parois sur les flux atmosphériques. Nous comparons des simulations avec différentes méthodes pour donner les valeurs des températures de surface des conteneurs. La première méthode consiste à imposer ces températures d'après les mesures ; ainsi la température de chaque paroi sera fixée à la température de surface mesurée lors de l'instrumentation de EM2PAU. Quant à la deuxième méthode, on impose la température de l'air extérieur mesurée à l'instant simulé à toutes les parois des conteneurs, afin de créer un cas où l'on n'observe que peu ou pas d'échanges de chaleur. Enfin la troisième méthode est la simulation couplée de Code_Saturne et BuildSysPro. Les résultats des différentes simulations sont alors comparés afin de distinguer les effets thermiques des parois des bâtiments sur les écoulements d'air. Nous observons que les effets dynamiques sont primordiaux et peuvent engendrer des vitesses verticales de l'écoulement dans le canyon de l'ordre plusieurs mètres par seconde, tandis que des écarts de températures de surface de l'ordre de 15°C peuvent modifier les vitesses verticales du vent de moins de 0, 5 mètres par seconde. Si ces effets thermiques sont difficiles à isoler sur des mesures en raison des autres phénomènes susceptibles d'influencer les écoulements atmosphériques, les études numériques peuvent toutefois mieux quantifier ces différences / This thesis work is about the effect of buildings on the urban atmosphere and more precisely the energetic exchanges that take place between these two systems. In order to model more finely the thermal effects of buildings on the atmospheric flows in simulations run under the CFD software Code_Saturne, we proceed to couple this tool with the building model BuildSysPro. This library is run under Dymola and can generate matrices describing the building thermal properties that can be used outside this software. In order to carry out the coupling, we use these matrices in a code that allows the building thermal calculations and the CFD to exchange their results. After a review about the physical phenomena and the existing models, we explain the interactions between the atmosphere and the urban elements, especially buildings. The latter can impact the air flows dynamically, as they act as obstacles, and thermally, through their surface temperatures. At first, we analyse the data obtained from the measurement campaign EM2PAU that we use in order to validate the coupled model. EM2PAU was carried out in Nantes in 2011 and represents a canyon street with two rows of four containers. Its distinctive feature lies in the simultaneous measurements of the air and wall temperatures as well as the wind speeds with anemometers located on a 10 m-high mast for the reference wind and on six locations in the canyon. This aims for studying the thermal influence of buildings on the air flows. Then the numerical simulations of the air flows in EM2PAU is carried out with different methods that allow us to calculate or impose the surface temperature we use, for each of the container walls. The first method consists in imposing their temperatures from the measurements. For each wall, we set the temperature to the surface temperature that was measured during the EM2PAU campaign. The second method involves imposing the outdoor air temperature that was measured at a given time to all the surfaces, reducing every heat exchange to almost zero. The third method at last is the coupled simulation of Code_Saturne and BuildSysPro where BuildSysPro calculates the wall temperature from the Code_Saturne data. . The results of these different ways of modelling the wall temperatures are then compared in order to show the thermal effects of building wall heating on the air flows. We notice that the dynamic effects are dominant and can generate vertical wind speed that can pass several meters per second. On the other hand, differences of surface temperatures higher than 15°C can influence the vertical wind speed for less than 0.5 meters per second. These thermal effects are not easily highlighted with measured data because of the other phenomena that can impact the air flows. However they can be quantified with numerical studies
|
4 |
Vibrational and Chemical Relaxation Rates of Diatomic GasesKewley, Douglas John, kewley@internode.on.net January 1975 (has links)
ABSTRACT
A theoretical and experimental study of the vibrational and chemical relaxation rates of diatomic gases, in flows behind shock waves and along nozzles,is made here.
¶
The validity of the conventional relaxation rate models, which are generally used to analyse experiments, is tested by developing a detailed microscopic description of the diatomic relaxation processes. Assuming the diatomic molecules to be represented by the anharmonic Morse Oscillator, the vibrational Master equation, which describes the time variation of each vibrational energy level population, is constructed by allowing one-quantum vibration to translation (V-T) energy exchanges and vibration to vibration (V-V) energy exchanges between the molecules. Dissociation and recombination are allowed to occur from, and to, the uppermost vibrational level. Solving the Master equation, it is found
that a number of effects are explained by the inclusion of V-V transitions. In particular it is found that V-V energy exchanges cause the induction time for H2 dissociation to be increased; suggest that the linear rate law, for H2 and Ar mixtures, fails for a H2 mole fraction above 20%; give an acceleration of vibrational excitation as equilibrium is approached for H2 and N2; cause the vibrational temperature to be lower than the value found without V-V transitions for vibrational de-excitation in nozzle flows of H2 and N2, and conversely for recombination of H2 in nozzle flows. The
most important result is the demonstration that conventional nozzle flow calculations, with shock-tube-determined dis-sociation and vibrational excitation rates, appear to be valid for the recombining and vibrationally de-excitating flows considered.
¶
The dissociation rates of undiluted nitrogen are measured in the free-piston shock tube DDT, using time-resolved optical interferometry, over a temperature range of 6000-14000K and confirm the strong temperature dependence of the pre-exponential factor observed by Hanson and Baganoff (1972).
¶
The vibrational de-excitation and excitation rates are determined in the small free-piston shock tunnel T2 over temperature ranges of 2000-4000K and 7000-10300K, respectively, by measuring the shock angles and curvatures, from optical interferograms, of flow over an inclined flat plate in the nonequilibrium nozzle flow. The de-excitation rate is found to be within a factor of ten of the excitation rate, while the excitation rate of N2 by collision with N is found to be
less than about 50 times the excitation rate of N2 by N2.
The dissociation rates of nitrogen, in the flow behind a shock attached to a wedge, are investigated in the large free-piston shock tunnel, using the shock curvature technique. The discrepancy, reported by Kewley and Hornung (1974b), between theory and experiment at the highest enthalpy is found to be resolved by including the measured helium contamination
(Crane 1975) in the free-stream. Reasonable agreement is obtained between experimental shock curvatures and calculations using accepted dissociation rates.
|
5 |
Estimativa dos fluxos de CO2 e evapotranspiração em áreas de caatinga em recuperação e degradada no estado da ParaíbaSANTOS, Francineide Amorim Costa. 15 August 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-08-15T18:40:26Z
No. of bitstreams: 1
FRANCINEIDE AMORIM COSTA SANTOS – TESE (PPGMet) 2015.pdf: 2985386 bytes, checksum: 4a052c9481457a7144e18ddda86f0b6d (MD5) / Made available in DSpace on 2018-08-15T18:40:26Z (GMT). No. of bitstreams: 1
FRANCINEIDE AMORIM COSTA SANTOS – TESE (PPGMet) 2015.pdf: 2985386 bytes, checksum: 4a052c9481457a7144e18ddda86f0b6d (MD5)
Previous issue date: 2015-08-28 / Capes / Estudos sobre trocas energéticas entre ecossistemase a atmosfera são de grande importância no entendimento do papel da vegetação sobre o microclima local, sendo ainda bastante escassos quando se trata da vegetação da Caatinga. O presente trabalho tem o objetivo de estudar as diferenças no comportamento de importantes variáveis como o albedo (α), saldo de radiação (Rn), evapotranspiração (ET) e fluxos de CO2 (NEE e GPP) em área de Caatinga em recuperação (CREC) e degradada (CDEG) no estado da Paraíba. Em campo, os fluxos foram medidos pelo método da covariância de vórtices turbulentos (Eddy Covariance) para posterior comparação com as mesmas variáveis obtidas a partirde dados provenientes do sensor MODIS (Moderate Resolution Imaging Spectroradiometer) a bordo do satélite Terra. As estimativas mostraram maiores valores de albedo para a CDEG, e maiores valores de Saldo de radiação, para a CREC, evidenciando que nessa área deve existir uma maior disponibilidade de energia para realização dos processos físicos. O coeficiente de determinação (R2) entre as estimativas e as observações de Rn diário foi de até 0,93. A ET estimada pela metodologia SEBAL apresentou maiores diferenças com relação aos valores observados, fato porém a ser considerado foi a ocorrência de chuvas próximas a quase todas as datas das imagens. O algoritmo MOD16A2, no entanto, apresentou valores de ET mais próximos das observações e maior concordância com o Índice de Vegetação por Diferença Normalizada (NDVI). A CREC, em geral, apresentou maiores valores de ET em comparação com a CDEG. As trocas líquidas do ecossistema (NEE) com a atmosfera mostraram-se mais evidentes para a CREC, com a CDEG apresentando um aumento perceptível na absorção de CO2apenas na época chuvosa. A produtividade primária bruta (GPP) estimada a partir do MOD17A2, mesmo subestimando bastante os dados medidos, consegue diferenciar as duas áreas em estudo para todas as épocas do ano, ao passo que a metodologia aplicada em escala local, associando dados MODIS e medidas de campo (GPP_ mod) aproximou-se mais das observações, porém a diferença entre as duas áreas em estudo tornou-se mais evidente no período com menor disponibilidade hídrica. Os valores de R2 entre GPP_torre e GPP_MOD17 foram, respectivamente de 0,74 e 0,66 para CREC e CDEG. Já ente GPP_torre e GPP_ mod os valores de R2 foram menores, quais sejam: 0,35 e 0,51 para a CREC e CDEG, respectivamente. / Studies on energy exchanges between ecosystems and the atmosphere are of great importance in understanding the role of vegetation on the local microclimate, still quite sparse when it comes to the vegetation of the Caatinga. This work aims to study the differences in the behavior of important variables as the albedo (α), net radiation (Rn), evapotranspiration (ET) and CO2 fluxes (NEE and GPP) in Caatinga area in recovery (CREC ) and degraded (CDEG) in the state of Paraíba. In the field, the flows were measured by the method of Eddy Covariance for later comparison with the same variables derived from data from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra satellite. The estimates showed higher albedo values for the CDEG, and higher net radiation values for the CREC, showing that in this area there should be a greater availability of energy for realization of physical processes. The coefficient of determination (R2) between the estimates and observations of daily Rn reached 0,93. The ET estimated by SEBAL methodology showed higher differences in relation to the observed values, but fact to be considered was the rainfall next to almost all dates of the images. The MOD16A2 algorithm, however, presented closer ETvalues of the observations and the agreement with the normalized difference vegetationindex (NDVI). The CREC, in general, showed higher ET values in comparison with the CDEG. The Net ecosystem exchange (NEE) with the atmosphere were more evident to CREC, withthe CDEG showing a noticeable increase in CO2 absorption only in the rainy season. The gross primary production (GPP) estimated from the MOD17A2 even quite underestimating the measureddata, can differentiate the two areas under study for all seasons, whereas the methodology applied at the local level, linking MODIS data and measures field (GPP_ mod) moved closer to the observations, but the difference between the two areas under study became more evident in the shorter water availability. The R2 values between GPP_torre and GPP_MOD17 were respectively 0,74 and 0,66 for CREC and CDEG. Already being GPP_torre and GPP_ mod R2 values were lower, as follows: 0,35
and 0,51 for the CREC and CDEG, respectively.
|
6 |
FLUXOS DE CALOR E TRANSFERÊNCIA DE ENERGIA CALORÍFICA ENTRE O OCEANO E A ATMOSFERA SOBRE ESTRUTURAS OCEÂNICAS DE MESOESCALA NO ATLÂNTICO SUL / HEAT FLUXES AND HEAT ENERGY TRANSFER BETWEEN THE OCEAN AND THE ATMOSPHERE ON TOP OF OCEANIC MESOSCALE STRUCTURES IN THE SOUTH ATLANTICArsego, Diogo Alessandro 20 March 2012 (has links)
Understanding the interactions between ocean and atmosphere in regions of oceanographic
fronts is of vital importance for the improvement of numerical models for weather and climate
forecasting. In the South Atlantic Ocean (SAO) the meeting between the warm waters of the Brazil
Current (BC) and the cold waters of the Malvinas (Falkland) Current (MC) in the region known as the
Brazil-Malvinas Confluence (BMC), results in intense mesoscale oceanic activity and, for this reason,
this region is considered one of the most energetic of the Global Ocean. The interactions resulting
from the thermal contrast in regions oceanographic fronts of the OAS are investigated in this work
through estimates of heat fluxes based on data collected in situ and by satellite. The results of this
study show that the response to the thermal contrasts found in the ocean is in the form of heat fluxes
and these fluxes are critical in modulating the atmospheric boundary layer (ABL). Estimation based on
data collected in situ show that in the warm side (north) of the oceanographic front the fluxes are more
intense (latent heat: 62 W/m² and sensible heat: 0.6 W/m²) than in the cold side (south) (latent heat:
5.8 W/m² and sensible heat: -13.8 W/m²). In the South Atlantic Current (SAC) along the 30° S
parallel, heat fluxes are directly related to the meandering characteristic of the current. The data
collected in situ, in addition to allow heat flux estimates at a better spatial resolution, were used to
develop a new method for estimating the heat energy exchanged between the atmosphere and the
ocean caused by the presence of mesoscale oceanic structures. This methodology consists in the
comparison of a radiosonde profile taken over waters of the structure of interest and another taken
over waters which do not belong to this structure. The methodology was used to estimate the heat
energy transfer between the atmosphere and the ocean over the top of three structures sampled in the
OAS. The estimation of the heat energy transferred by a warm eddy detached from the BC points to an
energy in the latent (sensible) form of 1.6 1017 J (-2.8 1016 J) which corresponds to approximately
0.011 % of the total heat energy of the eddy transferred to the atmosphere during the field experiment
and 0.78 % transferred during the supposed lifetime of the eddy (3 months). Along the CSA two
oceanic structures were studied: (i) a cold meander that receives from the atmosphere energy in the
latent (sensible) form of 1.4 106 J/m2 (5.4 105 J/m2), and (ii) warmer waters associated with a
detached eddy from the Agulhas Current (AC) that transfer to the atmosphe heat energy of
approximately 4 106 J/m2 an 5.7 106 J/m2 in the latent and sensible forms, respectively. The
estimation of heat energy transfer on top of mesoscale oceanic structures clearly demonstrate the
importance of these structures for the heat exchanges between the ocean and the atmosphere and must
be taken into account in future works about this subject in the SAO. / A compreensão das interações entre oceano e atmosfera em regiões de frentes oceanográficas
é de vital importância para o melhoramento de modelos numéricos de previsão do tempo e clima. No
Oceano Atlântico Sul (OAS) o encontro entre as águas quentes da Corrente do Brasil (CB) com as
águas frias da Corrente das Malvinas (CM), na região denominada Confluência Brasil-Malvinas
(CBM), resulta em intensa atividade oceânica de mesoescala e, por esse motivo, essa região é
considerada uma das mais energéticas do Oceano Global. As interações resultantes do contraste termal
ao longo de regiões de frentes oceanográficas no OAS são investigadas neste trabalho através de
estimativas de fluxos de calor baseadas em dados de satélite e dados coletados in situ. Os resultados do
trabalho demonstram que a resposta aos contrastes termais encontrados no oceano se dá na forma de
fluxos de calor e que esses fluxos são fundamentais na modulação da Camada Limite Atmosférica
(CLA). As estimativas com base em dados coletados in situ demonstram que no lado quente (norte) da
frente oceanográfica os fluxos são mais intensos (calor latente: 62 W/m² e calor sensível: 0,6 W/m²)
que nos lado frio (sul) (calor latente: 5,8 W/m² e calor sensível: -13,8 W/m²). Na Corrente Sul
Atlântica (CSA), ao longo do paralelo de 30° S, os fluxos de calor estão diretamente relacionados a
característica meandrante da corrente. Os dados coletados in situ, além de possibilitarem estimativas
de fluxo de calor com uma melhor resolução espacial, foram usados no desenvolvimento de uma nova
metodologia para estimativa da energia calorífica trocada entre oceano e atmosfera em virtude da
presença de estruturas oceânicas de mesoescala. Essa metodologia consiste na comparação entre um
perfil de radiossonda tomado sobre águas da estrutura de interesse e outro tomado sobre águas que não
pertencem a essa estrutura. A metodologia desenvolvida foi utilizada para determinar a transferência
de energia calorífica entre oceano e atmosfera em três estruturas amostradas no OAS. A estimativa da
energia calorífica transferida por um vórtice quente desprendido da CB aponta para uma energia na
forma latente (sensível) de 1,6 1017 J (-2,8 1016 J) que corresponde a aproximadamente 0,011 % da
energia calorífica total do vórtice transferida durante o experimento de campo e de 0,78 % da energia
do vórtice transferidos durante o tempo suposto de vida do vórtice (3 meses). Ao longo da CSA, duas
estruturas oceânicas foram estudadas: (i) um meandro frio que recebe da atmosfera uma energia na
forma latente (sensível) de 1,4 106 J/m2 (5,4 105 J/m2) e (ii) águas mais quentes associadas a um
vórtice desprendido da Corrente das Agulhas (CA) que transferem para a atmosfera uma energia
calorífica de aproximadamente 4 106 J/m2 e 5,7 106 J/m2 nas formas latente e sensível,
respectivamente. As estimativas da transferência de energia calorífica sobre estruturas oceânicas de
mesoescala demonstram claramente a importância destas nas trocas de calor entre o oceano e a
atmosfera e devem ser levadas em consideração em trabalhos futuros sobre o tema no OAS.
|
Page generated in 0.0579 seconds