• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Response to Tropical Cyclones in Mesoscale Oceanic Eddies

Jaimes, Benjamin 18 December 2009 (has links)
Tropical cyclones (TCs) often change intensity as they move over mesoscale oceanic features, as a function of the oceanic mixed layer (OML) thermal response (cooling) to the storm's wind stress. For example, observational evidence indicates that TCs in the Gulf of Mexico rapidly weaken over cyclonic cold core eddies (CCEs) where the cooling response is enhanced, and they rapidly intensify over anticyclonic warm features such as the Loop Current (LC) and Warm Core Eddies (WCEs) where OML cooling is reduced. Understanding this contrasting thermal response has important implications for oceanic feedback to TCs' intensity in forecasting models. Based on numerical experimentation and data acquired during hurricanes Katrina and Rita, this dissertation delineates the contrasting velocity and thermal response to TCs in mesoscale oceanic eddies. Observational evidence and model results indicate that, during the forced stage, the wind-driven horizontal current divergence under the storm's eye is affected by the underlying geostrophic circulation. Upwelling (downwelling) regimes develop when the wind stress vector is with (against) the geostrophic OML velocity vector. During the relaxation stage, background geostrophic circulations modulate vertical dispersion of OML near-inertial energy. The near-inertial velocity response is subsequently shifted toward more sub-inertial frequencies inside WCEs, where rapid vertical dispersion prevents accumulation of kinetic energy in the OML that reduces vertical shears and layer cooling. By contrast, near-inertial oscillations are vertically trapped in OMLs inside CCEs that increases vertical shears and entrainment. Estimates of downward vertical radiation of near-inertial wave energies were significantly stronger in the LC bulge (12.1X10 super -2 W m super -2) compared to that in CCEs (1.8X10 super -2 W m super -2). The rotational and translation properties of the geostrophic eddies have an important impact on the internal wave wake produced by TCs. More near-inertial kinetic energy is horizontally trapped in more rapidly rotating eddies. This response enhances vertical shear development and mixing. Moreover, the upper ocean temperature anomaly and near-inertial oscillations induced by TCs are transported by the westward-propagating geostrophic eddies. From a broader perspective, coupled models must capture oceanic features to reproduce the differentiated TC-induced OML cooling to improve intensity forecasting.
2

FLUXOS DE CALOR E TRANSFERÊNCIA DE ENERGIA CALORÍFICA ENTRE O OCEANO E A ATMOSFERA SOBRE ESTRUTURAS OCEÂNICAS DE MESOESCALA NO ATLÂNTICO SUL / HEAT FLUXES AND HEAT ENERGY TRANSFER BETWEEN THE OCEAN AND THE ATMOSPHERE ON TOP OF OCEANIC MESOSCALE STRUCTURES IN THE SOUTH ATLANTIC

Arsego, Diogo Alessandro 20 March 2012 (has links)
Understanding the interactions between ocean and atmosphere in regions of oceanographic fronts is of vital importance for the improvement of numerical models for weather and climate forecasting. In the South Atlantic Ocean (SAO) the meeting between the warm waters of the Brazil Current (BC) and the cold waters of the Malvinas (Falkland) Current (MC) in the region known as the Brazil-Malvinas Confluence (BMC), results in intense mesoscale oceanic activity and, for this reason, this region is considered one of the most energetic of the Global Ocean. The interactions resulting from the thermal contrast in regions oceanographic fronts of the OAS are investigated in this work through estimates of heat fluxes based on data collected in situ and by satellite. The results of this study show that the response to the thermal contrasts found in the ocean is in the form of heat fluxes and these fluxes are critical in modulating the atmospheric boundary layer (ABL). Estimation based on data collected in situ show that in the warm side (north) of the oceanographic front the fluxes are more intense (latent heat: 62 W/m² and sensible heat: 0.6 W/m²) than in the cold side (south) (latent heat: 5.8 W/m² and sensible heat: -13.8 W/m²). In the South Atlantic Current (SAC) along the 30° S parallel, heat fluxes are directly related to the meandering characteristic of the current. The data collected in situ, in addition to allow heat flux estimates at a better spatial resolution, were used to develop a new method for estimating the heat energy exchanged between the atmosphere and the ocean caused by the presence of mesoscale oceanic structures. This methodology consists in the comparison of a radiosonde profile taken over waters of the structure of interest and another taken over waters which do not belong to this structure. The methodology was used to estimate the heat energy transfer between the atmosphere and the ocean over the top of three structures sampled in the OAS. The estimation of the heat energy transferred by a warm eddy detached from the BC points to an energy in the latent (sensible) form of 1.6 1017 J (-2.8 1016 J) which corresponds to approximately 0.011 % of the total heat energy of the eddy transferred to the atmosphere during the field experiment and 0.78 % transferred during the supposed lifetime of the eddy (3 months). Along the CSA two oceanic structures were studied: (i) a cold meander that receives from the atmosphere energy in the latent (sensible) form of 1.4 106 J/m2 (5.4 105 J/m2), and (ii) warmer waters associated with a detached eddy from the Agulhas Current (AC) that transfer to the atmosphe heat energy of approximately 4 106 J/m2 an 5.7 106 J/m2 in the latent and sensible forms, respectively. The estimation of heat energy transfer on top of mesoscale oceanic structures clearly demonstrate the importance of these structures for the heat exchanges between the ocean and the atmosphere and must be taken into account in future works about this subject in the SAO. / A compreensão das interações entre oceano e atmosfera em regiões de frentes oceanográficas é de vital importância para o melhoramento de modelos numéricos de previsão do tempo e clima. No Oceano Atlântico Sul (OAS) o encontro entre as águas quentes da Corrente do Brasil (CB) com as águas frias da Corrente das Malvinas (CM), na região denominada Confluência Brasil-Malvinas (CBM), resulta em intensa atividade oceânica de mesoescala e, por esse motivo, essa região é considerada uma das mais energéticas do Oceano Global. As interações resultantes do contraste termal ao longo de regiões de frentes oceanográficas no OAS são investigadas neste trabalho através de estimativas de fluxos de calor baseadas em dados de satélite e dados coletados in situ. Os resultados do trabalho demonstram que a resposta aos contrastes termais encontrados no oceano se dá na forma de fluxos de calor e que esses fluxos são fundamentais na modulação da Camada Limite Atmosférica (CLA). As estimativas com base em dados coletados in situ demonstram que no lado quente (norte) da frente oceanográfica os fluxos são mais intensos (calor latente: 62 W/m² e calor sensível: 0,6 W/m²) que nos lado frio (sul) (calor latente: 5,8 W/m² e calor sensível: -13,8 W/m²). Na Corrente Sul Atlântica (CSA), ao longo do paralelo de 30° S, os fluxos de calor estão diretamente relacionados a característica meandrante da corrente. Os dados coletados in situ, além de possibilitarem estimativas de fluxo de calor com uma melhor resolução espacial, foram usados no desenvolvimento de uma nova metodologia para estimativa da energia calorífica trocada entre oceano e atmosfera em virtude da presença de estruturas oceânicas de mesoescala. Essa metodologia consiste na comparação entre um perfil de radiossonda tomado sobre águas da estrutura de interesse e outro tomado sobre águas que não pertencem a essa estrutura. A metodologia desenvolvida foi utilizada para determinar a transferência de energia calorífica entre oceano e atmosfera em três estruturas amostradas no OAS. A estimativa da energia calorífica transferida por um vórtice quente desprendido da CB aponta para uma energia na forma latente (sensível) de 1,6 1017 J (-2,8 1016 J) que corresponde a aproximadamente 0,011 % da energia calorífica total do vórtice transferida durante o experimento de campo e de 0,78 % da energia do vórtice transferidos durante o tempo suposto de vida do vórtice (3 meses). Ao longo da CSA, duas estruturas oceânicas foram estudadas: (i) um meandro frio que recebe da atmosfera uma energia na forma latente (sensível) de 1,4 106 J/m2 (5,4 105 J/m2) e (ii) águas mais quentes associadas a um vórtice desprendido da Corrente das Agulhas (CA) que transferem para a atmosfera uma energia calorífica de aproximadamente 4 106 J/m2 e 5,7 106 J/m2 nas formas latente e sensível, respectivamente. As estimativas da transferência de energia calorífica sobre estruturas oceânicas de mesoescala demonstram claramente a importância destas nas trocas de calor entre o oceano e a atmosfera e devem ser levadas em consideração em trabalhos futuros sobre o tema no OAS.
3

Variabilité interannuelle et analyse de la turbulence géostrophique dans le golfe de Gascogne à partir de simulations / lnterannual variability and analysis of geostroph¡c turbulence in the Bay of Biscay from simulations

Assassi, Charefeddine 16 December 2015 (has links)
Le golfe de Gascogne (GdG), un milieu riche en processus physiques a été étudié à partir de simulations numériques. L’étude est construite autour d'échelles allant du GdG à la sous méso-échelle. Dans la première partie, nous avons examiné la variabilité interannuelle de la température et de la salinité de surface sur une période de 53 ans : nous avons pu décrire deux tendances en lien avec I'Atlantique Nord-Est. Le refroidissement et la dessalure jusqu'en 1976 seraient liés à la grande anomalie de salinité, le réchauffement et la salinification actuels liés à I'augmentation de CO2 atmosphérique. Le GdG se caractérise par un courant de pente, lberian Poleward Current (lPC) : sa variabilité serait liée au vent du Sud-Ouest qui renforce l'lPC par un courant géostrophique dans le Bassin lbérique. L’un des résultats intéressant trouvé dans les simulations et confìrmé par les observations est l'apparition des anomalies froides liées à des upwellings en alternance avec des anomalies chaudes "La Navidad". Ces upwellings seraient liés au vent de Nord dans le Bassin lbérique mais au courant d'Ouest le long des côtes Nord espagnoles. Dans une deuxième partie, nous nous sommes attachés à la méso et sous méso-échelle à travers la détection des tourbillons et la variabilité des spectres d'énergie. Un indice basé sur le rapport entre I'anomalie de densité de surface et I'anomalie de niveau de la mer permet de détecter les tourbillons de subsurface et de les distinguer des tourbillons de surface. Une application de cet indice à partir des données satellites confirme le potentiel de détection des Slope Water Oceanic eDDIES (tourbillons de subsurface caractéristiques du GdG). La description de l'énergie cinétique turbulente (EKE) dans le GdG montre une variabilité spatiale avec un maximum le long de la côte Nord espagnole liée à I'lPC. Les pentes des spectres (k-4.2 pour la SSH, en k-2.4 pour la SST et en k-2.4 pour l'énergie cinétique) sont différents des observations satellites, mais comparables avec les précédentes études. Ces pentes de spectres ont également une variabilité saisonnière avec un maximum en hiver et un minimum en été, liée au cycle saisonnier de I'EKE. / The Bay of Biscay (BoB), an environment rich in physical processes has been studied from numerical simulations. Thestudy is built around scales from the size of BoB until sub mesoscale.ln the first part, we examined the interannual variability of the sea surface temperature and saliniÇ over a period of 53years: we were able to describe two trends related to the North-East Atlantic. Cooling and freshening until 1976 thatcould be related to the Great Salinity Anomaly and current salinification related to the atmospheric increase of CO2.The Bay of Biscay is characterized by a slope current, the lberian Poleward Current (lPC): its variability is linked to theSouth West wind strengthens the IPC by a geostrophic current in the lberian Basin. One of the interesting results foundin simulations and confirmed by observations is the appearance of cold anomalies related to upwellings and alternatingwith warm anomalies 'La Navidad'. These upwellings could be linked to the north wind in the lberian Basin but to the West current along the northern Spanish coast.ln the second part, we are committed to the meso and sub mesoscale eddies through a method of detection and throughthe variability of energy spectra. An index based on the ratio of surface density anomaly and sea level anomaly allowsdetecting subsurface vortices and distinguishing them from the surface ones. The application of this index from thesatellite data confirms the detection potential of Slope Water Oceanic Eddies (subsurface vortices of BoB).The description of the Eddy Kinetic Energy (EKE) in the BoB. shows a spatial variability with maximum along the Spanishnorth coast linked to the lPC. The slopes of the spectra (k-4.2 for SSH, k-2.4 for SST and k-2.4 for the kinetic energy) are different from satellite observations, but comparable with previous studies. These spectral slopes have a seasonalvariability with a maximum in winter and minimum in summe¡ related to the seasonal cycle of EKE.

Page generated in 0.0528 seconds