Spelling suggestions: "subject:"pode analysis"" "subject:"mode analysis""
61 |
IDE for SCADA Development at CERN / IDE for SCADA Development at CERNMareček, Matěj January 2016 (has links)
Cílem této magisterské práce je navrhnout a implementovat IDE (integrované vývojové prostředí), které zvýší efektivitu a bezpečnost vývoje pro SIMATIC WinCC Open Architecture. Tato práce je založena na výzkumu provedeném týmem z Technické univerzity v Eindhovenu a splňuje požadavky pocházející ze SCD sekce v CERN (Evropské organizace pro jaderný výzkum). Vyvinuté IDE je postaveno na platformě Eclipse, přičemž pro syntaktickou analýzu, linkování a sémantickou analýzu kódu používá Xtext framework. IDE nabízí také podporu pro nově vytvořený programovací jazyk, který umožňuje programátorům jednoduše nadefinovat šablonu pro konfigurační soubory používané WinCC OA. Interpret tohoto nového jazyka je schopen provést syntaktickou analýzu šablony a konfiguračního souboru a rozhodnout, zdali konfigurační soubor odpovídá šabloně. Praktickým výstupem této práce je integrované vývojové prostředí, které podporuje vývoj WinCC OA aplikací v CERN a periodicky provádí analýzu kódu těchto aplikací napsaného v jazyce Control script.
|
62 |
Preventing Health Data from Leaking in a Machine Learning System : Implementing code analysis with LLM and model privacy evaluation testing / Förhindra att Hälsodata Läcker ut i ett Maskininlärnings System : Implementering av kod analys med stor språk-modell och modell integritets testningJanryd, Balder, Johansson, Tim January 2024 (has links)
Sensitive data leaking from a system can have tremendous negative consequences, such as discrimination, social stigma, and fraudulent economic consequences for those whose data has been leaked. Therefore, it’s of utmost importance that sensitive data is not leaked from a system. This thesis investigated different methods to prevent sensitive patient data from leaking in a machine learning system. Various methods have been investigated and evaluated based on previous research; the methods used in this thesis are a large language model (LLM) for code analysis and a membership inference attack on models to test their privacy level. The LLM code analysis results show that the Llama 3 (an LLM) model had an accuracy of 90% in identifying malicious code that attempts to steal sensitive patient data. The model analysis can evaluate and determine membership inference of sensitive patient data used for training in machine learning models, which is essential for determining data leakage a machine learning model can pose in machine learning systems. Further studies in increasing the deterministic and formatting of the LLM‘s responses must be investigated to ensure the robustness of the security system that utilizes LLMs before it can be deployed in a production environment. Further studies of the model analysis can apply a wider variety of evaluations, such as increased size of machine learning model types and increased range of attack testing types of machine learning models, which can be implemented into machine learning systems. / Känsliga data som läcker från ett system kan ha enorma negativa konsekvenser, såsom diskriminering, social stigmatisering och negativa ekonomiska konsekvenser för dem vars data har läckt ut. Därför är det av yttersta vikt att känsliga data inte läcker från ett system. Denna avhandling undersökte olika metoder för att förhindra att känsliga patientdata läcker ut ur ett maskininlärningssystem. Olika metoder har undersökts och utvärderats baserat på tidigare forskning; metoderna som användes i denna avhandling är en stor språkmodell (LLM) för kodanalys och en medlemskapsinfiltrationsattack på maskininlärnings (ML) modeller för att testa modellernas integritetsnivå. Kodanalysresultaten från LLM visar att modellen Llama 3 hade en noggrannhet på 90% i att identifiera skadlig kod som försöker stjäla känsliga patientdata. Modellanalysen kan utvärdera och bestämma medlemskap av känsliga patientdata som används för träning i maskininlärningsmodeller, vilket är avgörande för att bestämma den dataläckage som en maskininlärningsmodell kan exponera. Ytterligare studier för att öka determinismen och formateringen av LLM:s svar måste undersökas för att säkerställa robustheten i säkerhetssystemet som använder LLM:er innan det kan driftsättas i en produktionsmiljö. Vidare studier av modellanalysen kan tillämpa ytterligare bredd av utvärderingar, såsom ökad storlek på maskininlärningsmodelltyper och ökat utbud av attacktesttyper av maskininlärningsmodeller som kan implementeras i maskininlärningssystem.
|
63 |
Formativ feedback i programmering med tillämpning av statisk kodanalys : Utveckling av ett verktygStålnacke, Olof January 2017 (has links)
Aim Develop an IT artifact that provides formative feedback for students based on their programming assignments. Background One of the best methods to learn programming is by practice. Providing feedback to students is an important and a valuable factor for improving learning, which plays a vital part in the student’s possibility to enhance and improve its solutions. Software development courses have several assignments and each course instructs about 100 students. To assess and provide feedback for all the students and each assignment demands considerable resources. In a survey conducted by TCO (2013) half of the respondents’ state that feedback is rarely or never given in reasonable time. Method Action Design Research (ADR) was used to intervene an organizational problem in parallel with building and evaluating an IT artifact. Conclusion The results from the study were four generated design principles and a proposed solution on how to use existing static code analysis tools for provide formative feedback to students.
|
64 |
Rekonfigurovatelná analýza strojového kódu / Retargetable Analysis of Machine CodeKřoustek, Jakub Unknown Date (has links)
Analýza softwaru je metodologie, jejímž účelem je analyzovat chování daného programu. Jednotlivé metody této analýzy je možné využít i v dalších oborech, jako je zpětné inženýrství, migrace kódu apod. V této práci se zaměříme na analýzu strojového kódu, na zjištění nedostatků existujících metod a na návrh metod nových, které umožní rychlou a přesnou rekonfigurovatelnou analýzu kódu (tj. budou nezávislé na konkrétní cílové platformě). Zkoumány budou dva typy analýz - dynamická (tj. analýza za běhu aplikace) a statická (tj. analýza aplikace bez jejího spuštění). Přínos této práce v rámci dynamické analýzy je realizován jako rekonfigurovatelný ladicí nástroj a dále jako dva typy tzv. rekonfigurovatelného translátovaného simulátoru. Přínos v rámci statické analýzy spočívá v navržení a implementování rekonfigurovatelného zpětného překladače, který slouží pro transformaci strojového kódu zpět do vysokoúrovňové reprezentace. Všechny tyto nástroje jsou založeny na nových metodách navržených autorem této práce. Na základě experimentálních výsledků a ohlasů od uživatelů je možné usuzovat, že tyto nástroje jsou plně srovnatelné s existujícími (komerčními) nástroji a nezřídka dosahují i lepších výsledků.
|
65 |
<b>The Significance of Automating the Integration of Security and Infrastructure as Code in Software Development Life Cycle</b>Hephzibah Adaeze Igwe (19213285) 28 July 2024 (has links)
<p dir="ltr">The research focuses on integrating automation, specifically security and Infrastructure as Code (IaC), into the Software Development Life Cycle (SDLC). This integration aims to enhance the efficiency, quality, and security of software development processes. The study explores the benefits and challenges associated with implementing DevSecOps practices, which combine development, security, and operations into a unified process.</p><h3>Background and Motivation</h3><p dir="ltr">The rise of new technologies and increasing demand for high-quality software have made software development a crucial aspect of business operations. The SDLC is essential for ensuring that software meets user requirements and maintains high standards of quality and security. Security, in particular, has become a critical focus due to the growing threat of cyber-attacks and data breaches. By integrating security measures early in the development process, companies can better protect their software and data.</p><h3>Objectives</h3><p dir="ltr">The primary objectives of this research are:</p><ol><li><b>Examine the Benefits and Challenges</b>: To investigate the advantages and difficulties of integrating DevSecOps and IaC within the SDLC.</li><li><b>Analyze Impact on Security and Quality</b>: To assess how automation affects the security and quality of software developed through the SDLC.</li><li><b>Develop a Framework</b>: To create a comprehensive framework for integrating DevSecOps and IaC into the SDLC, thereby improving security and reducing time to market.</li></ol><h3>Methodology</h3><p dir="ltr">The research employs a mixed-methods approach, combining qualitative and quantitative methods:</p><ul><li><b>Qualitative</b>: A literature review of existing research on DevSecOps, IaC, and SDLC, providing a theoretical foundation and context.</li><li><b>Quantitative</b>: Building a CI/CD (Continuous Integration/Continuous Deployment) pipeline from scratch to collect empirical data. This pipeline serves as a case study to gather insights into how automation impacts software security and quality.</li></ul><h3>Tools and Technologies</h3><p dir="ltr">The study utilizes various tools, including:</p><ul><li><b>GitHub</b>: For version control and code repository management.</li><li><b>Jenkins</b>: To automate the CI/CD pipeline, including building, testing, and deploying applications.</li><li><b>SonarQube</b>: For static code analysis, detecting code quality issues, and security vulnerabilities.</li><li><b>Amazon Q</b>: An AI-driven tool used for code generation and security scanning.</li><li><b>OWASP Dependency-Check</b>: To identify vulnerabilities in project dependencies.</li><li><b>Prometheus and Grafana</b>: For monitoring and collecting metrics.</li><li><b>Terraform</b>: For defining and deploying infrastructure components as code.</li></ul><h3>Key Findings</h3><ul><li><b>Reduction in Defect Density</b>: Automation significantly reduced defect density, indicating fewer bugs and higher code quality.</li><li><b>Increase in Code Coverage</b>: More comprehensive testing, leading to improved software reliability.</li><li><b>Reduction in MTTR, MTTD, and MTTF</b>: Enhanced system reliability and efficiency, with faster detection and resolution of issues.</li><li><b>Improved System Performance</b>: Better performance metrics, such as reduced response time and increased throughput.</li></ul><h3>Conclusion</h3><p dir="ltr">The study concludes that integrating security and IaC automation into the SDLC is crucial for improving software quality, security, and development efficiency. However, despite the clear benefits, many companies are hesitant to adopt these practices due to perceived challenges, such as the upfront investment, complexity of implementation, and concerns about ROI (Return on Investment). The research underscores the need for continued innovation and adaptation in software development practices to meet the evolving demands of the technological landscape.</p><h3>Areas for Further Research</h3><p dir="ltr">Future studies could explore the broader impact of automation on developer productivity, job satisfaction, and long-term security practices. There is also potential for developing advanced security analysis techniques using machine learning and artificial intelligence, as well as investigating the integration of security and compliance practices within automated SDLC frameworks.</p>
|
Page generated in 0.4017 seconds