• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 65
  • 51
  • 33
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 8
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 846
  • 846
  • 406
  • 279
  • 267
  • 137
  • 134
  • 130
  • 111
  • 107
  • 104
  • 96
  • 87
  • 86
  • 81
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

TIME-DOMAIN INTERPOLATION OF CLIPPED SPEECH AND THE EFFECTS ON LINEAR PREDICTIVE ANALYSIS.

League, Barbara Lynn Bunch. January 1983 (has links)
No description available.
482

Pruned convolutional codes and Viterbi decoding with the Levenshtein distance metric

26 February 2009 (has links)
M.Ing. / In practical transmission or storage systems, the convolutional encoding and Viterbi decoding scheme is widely used to protect the data from substitution errors. Two independent insertion/deletion/substitution (IDS) error correcting designs, working on the convolutional encoder and the Viterbi decoder respectively, are shown in this thesis. The Levenshtein distance has previously been postulated to be a suitable branch comparison metric for the Viterbi algorithm on channels with not only substitution errors, but also insertion/deletion errors. However, to a large extent, this hypothesis has still to be investigated. In the first coding scheme, a modified Viterbi algorithm based on the Levenshtein distance metric is used as the decoding algorithm. Our experiments give evidence that the modified Viterbi algorithm with the Levenshtein distance metric is suitable as an applicable decoding algorithm for IDS channels. In the second coding scheme, a new type of convolutional code called the path-pruned convolutional code is introduced on the encoder side. By periodically deleting branches in a high rate convolutional code trellis diagram to create a specific insertion/deletion error correcting block codeword structure in the encoded sequence, we can obtain an encoding system to protect against insertion, deletion and substitution errors at the same time. Moreover, the path-pruned convolutional code is an ideal code to use for unequal error protection. Therefore, we also present an application of the rate-compatible path-pruned convolutional codes over IDS channels.
483

Turbo-coded frequency division multiplexing for underwater acoustic communications between 60 kHz and 90 kHz

Unknown Date (has links)
The Intermediate Frequency Acoustic Modem (IFAM), developed by Dr. Beaujean, is designed to transmit the command-and-control messages from the top-side to the wet-side unit in ports and very shallow waters. This research presents the design of the turbo coding scheme and its implementation in the IFAM modem with the purpose of meeting a strict requirement for the IFAM error rate performance. To simulate the coded IFAM, a channel simulator is developed. It is basically a multi-tap filter whose parameters are set depending on the channel geometry and system specifics. The simulation results show that the turbo code is able to correct 89% of the messages received with errors in the hostile channel conditions. The Bose-Chadhuri-Hocquenghem (BCH) coding scheme corrects less that 15% of these messages. The other simulation results obtained for the system operation in different shallow water settings are presented. / by Milutin Pajovic. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
484

A Chinese text processing system design and implementation.

January 1983 (has links)
by Tong Po-Cheung. / Bibliography: leaves [v-10]-[v-11] / Thesis (M.Ph.)--Chinese University of Hong Kong, 1983
485

Stereoscopic video coding.

January 1995 (has links)
by Roland Siu-kwong Ip. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 101-[105]). / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Image Compression --- p.2 / Chapter 1.2.1 --- Classification of Image Compression --- p.2 / Chapter 1.2.2 --- Lossy Compression Approaches --- p.3 / Chapter 1.3 --- Video Compression --- p.4 / Chapter 1.3.1 --- Video Compression System --- p.5 / Chapter 1.4 --- Stereoscopic Video Compression --- p.6 / Chapter 1.5 --- Organization of the thesis --- p.6 / Chapter 2 --- Motion Video Coding Theory --- p.8 / Chapter 2.1 --- Introduction --- p.8 / Chapter 2.2 --- Representations --- p.8 / Chapter 2.2.1 --- Temporal Processing --- p.13 / Chapter 2.2.2 --- Spatial Processing --- p.19 / Chapter 2.3 --- Quantization --- p.25 / Chapter 2.3.1 --- Scalar Quantization --- p.25 / Chapter 2.3.2 --- Vector Quantization --- p.27 / Chapter 2.4 --- Code Word Assignment --- p.29 / Chapter 2.5 --- Selection of Video Coding Standard --- p.31 / Chapter 3 --- MPEG Compatible Stereoscopic Coding --- p.34 / Chapter 3.1 --- Introduction --- p.34 / Chapter 3.2 --- MPEG Compatibility --- p.36 / Chapter 3.3 --- Stereoscopic Video Coding --- p.37 / Chapter 3.3.1 --- Coding by Stereoscopic Differences --- p.37 / Chapter 3.3.2 --- I-pictures only Disparity Coding --- p.40 / Chapter 3.4 --- Stereoscopic MPEG Encoder --- p.44 / Chapter 3.4.1 --- Stereo Disparity Estimator --- p.45 / Chapter 3.4.2 --- Improved Disparity Estimation --- p.47 / Chapter 3.4.3 --- Stereo Bitstream Multiplexer --- p.49 / Chapter 3.5 --- Generic Implementation --- p.50 / Chapter 3.5.1 --- Macroblock Converter --- p.54 / Chapter 3.5.2 --- DCT Functional Block --- p.55 / Chapter 3.5.3 --- Rate Control --- p.57 / Chapter 3.6 --- Stereoscopic MPEG Decoder --- p.58 / Chapter 3.6.1 --- Mono Playback --- p.58 / Chapter 3.6.2 --- Stereo Playback --- p.60 / Chapter 4 --- Performance Evaluation --- p.63 / Chapter 4.1 --- Introduction --- p.63 / Chapter 4.2 --- Test Sequences Generation --- p.63 / Chapter 4.3 --- Simulation Environment --- p.64 / Chapter 4.4 --- Simulation Results --- p.65 / Chapter 4.4.1 --- Objective Results --- p.65 / Chapter 4.4.2 --- Subjective Results --- p.72 / Chapter 5 --- Conclusions --- p.80 / Chapter A --- MPEG ´ؤ An International Standard --- p.83 / Chapter A.l --- Introduction --- p.83 / Chapter A.2 --- Preprocessing --- p.84 / Chapter A.3 --- Data Structure of Pictures --- p.85 / Chapter A.4 --- Picture Coding --- p.86 / Chapter A.4.1 --- Coding of Motion Vectors --- p.90 / Chapter A.4.2 --- Coding of Quantized Coefficients --- p.94 / References --- p.101
486

Finite fields, algebraic curves and coding theory. / Finite fields, algebraic curves & coding theory

January 2006 (has links)
Yeung Wai Ling Winnie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 99-100). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Finite Fields --- p.4 / Chapter 2.1 --- Basic Properties of Finite Fields --- p.4 / Chapter 2.2 --- Existence and Uniqueness of Finite Fields --- p.8 / Chapter 2.3 --- Algorithms in Factoring Polynomials --- p.11 / Chapter 2.3.1 --- Factorization of xn ´ؤ 1 --- p.11 / Chapter 2.3.2 --- Berlekamp Algorithm for Factorizing an Arbitrary Polynomial --- p.13 / Chapter 3 --- Algebraic Curves --- p.17 / Chapter 3.1 --- Affine and Projective Curves --- p.17 / Chapter 3.2 --- Local Properties and Intersections of Curves --- p.19 / Chapter 3.3 --- Linear Systems of Curves and Noether's Theorem --- p.24 / Chapter 3.4 --- Rational Function and Divisors --- p.29 / Chapter 3.5 --- Differentials on a Curve --- p.34 / Chapter 3.6 --- Riemann-Roch Theorem --- p.36 / Chapter 4 --- Coding Theory --- p.46 / Chapter 4.1 --- Introduction to Coding Theory --- p.46 / Chapter 4.1.1 --- Basic Definitions for Error-Correcting Code --- p.46 / Chapter 4.1.2 --- Geometric Approach to Error-Correcting Capabilities of Codes --- p.48 / Chapter 4.2 --- Linear Codes --- p.49 / Chapter 4.2.1 --- The Dual of a Linear Code --- p.54 / Chapter 4.2.2 --- Syndrome Decoding --- p.57 / Chapter 4.2.3 --- Extension of Basic Field --- p.60 / Chapter 4.3 --- The Main Problem in Coding Theory --- p.62 / Chapter 4.3.1 --- "Elementary Results on Aq(n, d)" --- p.63 / Chapter 4.3.2 --- "Lower Bounds on Aq(n, d)" --- p.63 / Chapter 4.3.3 --- "Upper Bounds on Aq(n,d)" --- p.65 / Chapter 4.3.4 --- Asymptotic Bounds --- p.67 / Chapter 4.4 --- Rational Codes --- p.68 / Chapter 4.4.1 --- Hamming Codes --- p.68 / Chapter 4.4.2 --- Codes on an Oval --- p.69 / Chapter 4.4.3 --- Codes on a Twisted Cubic Curve --- p.78 / Chapter 4.4.4 --- Normal Rational Codes --- p.82 / Chapter 4.5 --- Goppa Codes --- p.84 / Chapter 4.5.1 --- Classical Goppa Codes --- p.85 / Chapter 4.5.2 --- Geometric Goppa Codes --- p.88 / Chapter 4.5.3 --- Good Codes from Algebraic Geometry --- p.91 / Chapter 4.6 --- A Recent Non-linear Code Improving the Tsfasman- Vladut-Zink Bound --- p.93 / Bibliography --- p.99
487

Combating channels with long impulse response using combined turbo equalization and turbo decoding.

January 2000 (has links)
by Chan Yiu Tong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 56-[59]). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Communications and Coding Technology --- p.2 / Chapter 1.2 --- The Emerge of Turbo Codes --- p.3 / Chapter 1.3 --- The Extension of Turbo Principle --- p.3 / Chapter 1.4 --- Receiver Structures for Practical Situations --- p.4 / Chapter 1.5 --- Thesis Overview --- p.5 / Chapter 2 --- ISI Channel Model and Channel Equalization --- p.6 / Chapter 2.1 --- A Discrete Time ISI Channel Model --- p.6 / Chapter 2.1.1 --- Optimum Maximum Likelihood Receiver --- p.8 / Chapter 2.1.2 --- The Whitened Matched Filter --- p.11 / Chapter 2.2 --- Equalization Techniques for Combating ISI --- p.13 / Chapter 2.2.1 --- Linear MMSE Equalizer --- p.13 / Chapter 2.2.2 --- MLSE Equalizer in Viterbi Algorithm --- p.15 / Chapter 3 --- An Overview of Turbo Codes --- p.18 / Chapter 3.1 --- The Turbo Encoder --- p.19 / Chapter 3.2 --- The Turbo Interleaver --- p.21 / Chapter 3.3 --- The Iterative Decoder --- p.22 / Chapter 3.3.1 --- The MAP Algorithm --- p.23 / Chapter 3.3.2 --- The Max-Log MAP Algorithm --- p.25 / Chapter 3.3.3 --- The Log-MAP Algorithm --- p.28 / Chapter 4 --- Receivers for Channels with Long Impulse Responses --- p.29 / Chapter 4.1 --- Shortcomings for the Existing Models --- p.30 / Chapter 4.2 --- Proposed System Architecture --- p.30 / Chapter 4.2.1 --- Optimized Model for Channel Shortening Filter --- p.31 / Chapter 4.2.2 --- Method One - Separate Trellises for EQ and DEC --- p.35 / Chapter 4.2.3 --- Method Two - Combined Trellises for EQ and DEC --- p.37 / Chapter 5 --- Performance Analysis --- p.40 / Chapter 5.1 --- Simulation Model and Settings --- p.40 / Chapter 5.2 --- Performance Expectations --- p.43 / Chapter 5.3 --- Simulation Results and Discussions --- p.49 / Chapter 6 --- Concluding Remarks --- p.55 / Bibliography --- p.56
488

low bit rate speech coder based on waveform interpolation =: 基於波形預測方法的低比特率語音編碼. / 基於波形預測方法的低比特率語音編碼 / A low bit rate speech coder based on waveform interpolation =: Ji yu bo xing yu ce fang fa de di bi te lu yu yin bian ma. / Ji yu bo xing yu ce fang fa de di bi te lu yu yin bian ma

January 1999 (has links)
by Ge Gao. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 101-107). / Text in English; abstracts in English and Chinese. / by Ge Gao. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Attributes of speech coders --- p.1 / Chapter 1.1.1 --- Bit rate --- p.2 / Chapter 1.1.2 --- Speech quality --- p.3 / Chapter 1.1.3 --- Complexity --- p.3 / Chapter 1.1.4 --- Delay --- p.4 / Chapter 1.1.5 --- Channel-error sensitivity --- p.4 / Chapter 1.2 --- Development of speech coding techniques --- p.5 / Chapter 1.3 --- Motivations and objectives --- p.7 / Chapter 2 --- Waveform interpolation speech model --- p.9 / Chapter 2.1 --- Overview of speech production model --- p.9 / Chapter 2.2 --- Linear prediction(LP) --- p.11 / Chapter 2.3 --- Linear-prediction based analysis-by-synthesis coding(LPAS) --- p.14 / Chapter 2.4 --- Sinusoidal model --- p.15 / Chapter 2.5 --- Mixed Excitation Linear Prediction(MELP) model --- p.16 / Chapter 2.6 --- Waveform interpolation model --- p.16 / Chapter 2.6.1 --- Principles of waveform interpolation model --- p.18 / Chapter 2.6.2 --- Outline of a WI coding system --- p.25 / Chapter 3 --- Pitch detection --- p.31 / Chapter 3.1 --- Overview of existing pitch detection methods --- p.31 / Chapter 3.2 --- Robust Algorithm for Pitch Tracking(RAPT) --- p.33 / Chapter 3.3 --- Modifications of RAPT --- p.37 / Chapter 4 --- Development of a 1.7kbps speech coder --- p.44 / Chapter 4.1 --- Architecture of the coder --- p.44 / Chapter 4.2 --- Encoding of unvoiced speech --- p.46 / Chapter 4.3 --- Encoding of voiced speech --- p.46 / Chapter 4.3.1 --- Generation of PCW --- p.48 / Chapter 4.3.2 --- Variable Dimensional Vector Quantization(VDVQ) --- p.53 / Chapter 4.3.3 --- Sparse frequency representation(SFR) of speech --- p.56 / Chapter 4.3.4 --- Sample selective linear prediction (SSLP) --- p.58 / Chapter 4.4 --- Practical implementation issues --- p.60 / Chapter 5 --- Development of a 2.0kbps speech coder --- p.67 / Chapter 5.1 --- Features of the coder --- p.67 / Chapter 5.2 --- Postfiltering --- p.75 / Chapter 5.3 --- Voice activity detection(VAD) --- p.76 / Chapter 5.4 --- Performance evaluation --- p.79 / Chapter 6 --- Conclusion --- p.85 / Chapter A --- Subroutine for pitch detection algorithm --- p.88 / Chapter B --- Subroutines for Pitch Cycle Waveform(PCW) generation --- p.96 / Chapter B.1 --- The main subroutine --- p.96 / Chapter B.2 --- Subroutine for peak picking algorithm --- p.98 / Chapter B.3 --- Subroutine for encoding the residue (using VDVQ) --- p.99 / Chapter B.4 --- Subroutine for synthesizing PCW from its residue --- p.100 / Bibliography --- p.101
489

MDRS: a low complexity scheduler with deterministic performance guarantee for VBR video delivery.

January 2001 (has links)
by Lai Hin Lun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 54-57). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Table of Contents --- p.v / List of Figures --- p.vii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Related Works --- p.8 / Chapter 2.1 --- Source Modeling --- p.9 / Chapter 2.2 --- CBR Scheduler for VBR Delivery --- p.11 / Chapter 2.3 --- Brute Force Scheduler: --- p.15 / Chapter 2.4 --- Temporal Smoothing Scheduler: --- p.16 / Chapter Chapter 3 --- Decreasing Rate Scheduling --- p.22 / Chapter 3.1 --- MDRS with Minimum Buffer Requirement --- p.25 / Chapter 3.2 --- 2-Rate MDRS --- p.31 / Chapter Chapter 4 --- Performance Evaluation --- p.33 / Chapter 4.1 --- Buffer Requirement --- p.35 / Chapter 4.2 --- Startup Delay --- p.38 / Chapter 4.3 --- Disk Utilization --- p.39 / Chapter 4.4 --- Complexity --- p.43 / Chapter Chapter 5 --- Conclusion --- p.49 / Appendix --- p.51 / Bibliography --- p.54
490

Foreground/background video coding for video conferencing =: 應用於視訊會議之前景/後景視訊編碼. / 應用於視訊會議之前景/後景視訊編碼 / Foreground/background video coding for video conferencing =: Ying yong yu shi xun hui yi zhi qian jing/ hou jing shi xun bian ma. / Ying yong yu shi xun hui yi zhi qian jing/ hou jing shi xun bian ma

January 2002 (has links)
Lee Kar Kin Edwin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 129-134). / Text in English; abstracts in English and Chinese. / Lee Kar Kin Edwin. / Acknowledgement --- p.ii / Abstract --- p.iii / Contents --- p.vii / List of Figures --- p.ix / List of Tables --- p.xiii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- A brief review of transform-based video coding --- p.1 / Chapter 1.2 --- A brief review of content-based video coding --- p.6 / Chapter 1.3 --- Objectives of the research work --- p.9 / Chapter 1.4 --- Thesis outline --- p.12 / Chapter 2 --- Incorporation of DC Coefficient Restoration into Foreground/Background coding --- p.13 / Chapter 2.1 --- Introduction --- p.13 / Chapter 2.2 --- A review of FB coding in H.263 sequence --- p.15 / Chapter 2.3 --- A review of DCCR --- p.18 / Chapter 2.4 --- DCCRFB coding --- p.23 / Chapter 2.4.1 --- Methodology --- p.23 / Chapter 2.4.2 --- Implementation --- p.24 / Chapter 2.4.3 --- Experimental results --- p.26 / Chapter 2.5 --- The use of block selection scheme in DCCRFB coding --- p.32 / Chapter 2.5.1 --- Introduction --- p.32 / Chapter 2.5.2 --- Experimental results --- p.34 / Chapter 2.6 --- Summary --- p.47 / Chapter 3 --- Chin contour estimation on foreground human faces --- p.48 / Chapter 3.1 --- Introduction --- p.48 / Chapter 3.2 --- Least mean square estimation of chin location --- p.50 / Chapter 3.3 --- Chin contour estimation using chin edge detector and contour modeling --- p.58 / Chapter 3.3.1 --- Face segmentation and facial organ extraction --- p.59 / Chapter 3.3.2 --- Identification of search window --- p.59 / Chapter 3.3.3 --- Edge detection using chin edge detector --- p.60 / Chapter 3.3.4 --- "Determination of C0, C1 and c2" --- p.63 / Chapter 3.3.5 --- Chin contour modeling --- p.67 / Chapter 3.4 --- Experimental results --- p.71 / Chapter 3.5 --- Summary --- p.77 / Chapter 4 --- Wire-frame model deformation and face animation using FAP --- p.78 / Chapter 4.1 --- Introduction --- p.78 / Chapter 4.2 --- Wire-frame face model deformation --- p.79 / Chapter 4.2.1 --- Introduction --- p.79 / Chapter 4.2.2 --- Wire-frame model selection and FDP generation --- p.81 / Chapter 4.2.3 --- Global deformation --- p.85 / Chapter 4.2.4 --- Local deformation --- p.87 / Chapter 4.2.5 --- Experimental results --- p.93 / Chapter 4.3 --- Face animation using FAP --- p.98 / Chapter 4.3.1 --- Introduction and methodology --- p.98 / Chapter 4.3.2 --- Experiments --- p.102 / Chapter 4.4 --- Summary --- p.112 / Chapter 5 --- Conclusions and future developments --- p.113 / Chapter 5.1 --- Contributions and conclusions --- p.113 / Chapter 5.2 --- Future developments --- p.117 / Appendix A H.263 bitstream syntax --- p.122 / Appendix B Excerpt of the FAP specification table [17] --- p.123 / Bibliography --- p.129

Page generated in 0.0499 seconds