• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RBF Based Responsive Stimulators To Control Epilepsy

Colic, Sinisa 13 January 2010 (has links)
Deep Brain Simulation (DBS) has received attention in the scientific community for its potential to suppress epileptic seizures. To date, DBS has only achieved marginal positive results. We believe that a highly complex possibly chaotic (HPC) biologically inspired stimulation is superior to periodic stimulation. Using Radial Basis Functions (RBFs), we modeled interictal and postictal time series based on electroencephalograms (EEGs) of rat hippocampus slices while under low Mg2+. We then compared the RBF based interictal and postictal stimulations to the periodic stimulation using a Cognitive Rhythm Generator (CRG) model for spontaneous Seizure-Like Events (SLEs). What resulted was a significant improvement in seizure suppression with the HPC stimulators at lower gains as opposed to the periodic signal. This suggests that the use of biologically inspired HPC stimulators will achieve better results while confining the stimulation to a narrow region of the brain.
2

RBF Based Responsive Stimulators To Control Epilepsy

Colic, Sinisa 13 January 2010 (has links)
Deep Brain Simulation (DBS) has received attention in the scientific community for its potential to suppress epileptic seizures. To date, DBS has only achieved marginal positive results. We believe that a highly complex possibly chaotic (HPC) biologically inspired stimulation is superior to periodic stimulation. Using Radial Basis Functions (RBFs), we modeled interictal and postictal time series based on electroencephalograms (EEGs) of rat hippocampus slices while under low Mg2+. We then compared the RBF based interictal and postictal stimulations to the periodic stimulation using a Cognitive Rhythm Generator (CRG) model for spontaneous Seizure-Like Events (SLEs). What resulted was a significant improvement in seizure suppression with the HPC stimulators at lower gains as opposed to the periodic signal. This suggests that the use of biologically inspired HPC stimulators will achieve better results while confining the stimulation to a narrow region of the brain.

Page generated in 0.0579 seconds