Spelling suggestions: "subject:"cognitive profiles"" "subject:"aognitive profiles""
1 |
Language and number in Williams Syndrome and Down's Syndrome : from infant precursors to the mature phenotypePaterson, Sarah Jane January 2000 (has links)
This thesis is an examination of language and number in two atypically developing groups, Williams Syndrome (WS) and Down's Syndrome (DS). These groups were chosen because their cognitive profiles in adulthood differ significantly. It is already known that language is a relative strength in WS but that it is poorer than non-verbal ability in DS. The precursors to both language and number ability were studied in 24-36 month old infants and performance at this stage was compared with that in the steady state, by testing older children and adults, aged 9-35 years. Similar age-appropriate tests were used with both groups so that performance in the steady state could be compared with that in infancy. Specific subdomains of language and number were assessed to investigate whether the pattern seen in the adult steady state was also present in infancy, or whether the mature phenotype is a product of the different developmental trajectories followed by each group. The overall cognitive profile of infants with WS and DS did not differ significantly, despite clear distinctions between the adult profiles. However, their performance on number and language tasks did differ in infancy. While in adulthood WS performance on number tasks was poorer than that of DS, in infancy this pattern was reversed. For language, infants with DS exhibited a large discrepancy between productive and receptive vocabulary. A more even pattern was present for the WS group. In adulthood, vocabulary was better in WS than DS but both groups had problems with syntactic structures. Taken together these results suggest that it is not possible to derive the pattern of infant performance from the steady state in adulthood. The developmental trajectories from precursors to mature phenotype need to be thoroughly charted in atypical populations because the study of development, not just the characterisation of the endstates, is crucial.
|
2 |
Exploring cognitive profiles of children with learning difficultiesTonn, Ryan Unknown Date
No description available.
|
3 |
Exploring cognitive profiles of children with learning difficultiesTonn, Ryan 06 1900 (has links)
This study compares the role of cognitive processes in children diagnosed with learning disabilities (LD) through the traditional aptitude-achievement discrepancy model with students diagnosed on the basis of their low achievement alone. Historically, in North American settings, LD has been diagnosed when an individual’s achievement on standardized tests in reading, mathematics, or written expression is substantially lower than the expected level for age, schooling, and level of intelligence (American Psychiatric Association, 2000). As this conceptualization has come under increasing scrutiny, alternate identification methods such as the low achievement/non-discrepant method have been gaining support in the literature (e.g. Siegel, 1999; Stanovich, 2005). A secondary objective of this study is to determine whether identifiable differences exist between the cognitive profiles (WISC-IV) of students diagnosed with reading disability (RD) and mathematics disability (MD). This study also addresses whether the WISC-IV Working Memory Index can be used to differentiate between various categories of students with LD. The findings of this study indicate that the discrepant (DLD) and non-discrepant (NDLD) learning disability (LD) groups could not be distinguished by the WISC-IV Working Memory Index (WMI). Amongst the overall sample of students with LD, those with average or above working memory scores (high) could be differentiated from those with below average working memory scores (low) on the WISC-IV Perceptual Reasoning Index (PRI). Students with LD who had low WMI scores could also be differentiated from those with high WMI scores on four WIAT-II subtests. WMI scores could not be used to differentiate students with Reading Disability (RD), Mathematics Disability (MD) or Generalized Learning Disability (GLD). However, differences between these three LD groups were found on the WISC-IV Verbal Comprehension Index (VCI), Perceptual Reasoning Index (PRI), and marginally on the Processing Speed Index (PSI). Finally, the four WISC-IV Index scores were able to correctly predict group membership in the RD, MD, and GLD groups approximately 70% of the time. / Psychological Studies in Education
|
4 |
Analysis and classification of spatial cognition using non-linear analysis and artificial neural networks / Análise e classificação da capacidade cognitiva espacial utilizando técnicas de análise não-linear e redes neurais artificiaisMaron, Guilherme January 2014 (has links)
O principal objetivo do presente trabalho é propor, desenvolver, testar e apresentar um método para a classificação do grau de desenvolvimento da capacidade cognitiva espacial de diferentes indivíduos. 37 alunos de graduação tiveram seus eletroencefalogramas (EEGs) capturados enquanto estavam engajados em tarefas de rotação mental de imagens tridimensionais. Seu grau de desenvolvimento da capacidade cognitiva espacial foi avaliado utilizando-se um teste psicológico BPR-5. O maior expoente de Lyapunov (LLE) foi calculado a partir de cada um dos 8 canais dos EEGs capturados. OS LLEs foram então utilizados como tuplas de entrada para 5 diferentes classificadores: i) perceptron de múltiplas camadas, ii) rede neural artificial de funções de base radial, iii) perceptron votado, iv) máquinas de vetor de suporte, e v) k-vizinhos. O melhor resultado foi obtido utilizando-se uma RBF com 4 clusters e a função de kernel Puk. Também foi realizada uma análise estatística das diferenças de atividade cerebral, baseando-se nos LLEs calculados, entre os dois grupos de interesse: SI+ (indivíduos com um suposto maior grau de desenvolvimento da sua capacidade cognitiva espacial) e SI- (grupo de controle) durante a realização de tarefas de rotação mental de imagens tridimensionais. Uma diferença média de 16% foi encontrada entre os dois grupos. O método de classificação proposto pode vir a contribuir e a interagir com outros processos na analise e no estudo da capacidade cognitiva espacial humana, assim como no entendimento da inteligência humana como um todo. Um melhor entendimento e avaliação das capacidades cognitivas de um indivíduo podem sugerir a este elementos de motivação, facilidade ou de inclinações naturais suas, podendo, provavelmente, afetar as decisões da sua vida e carreira de uma forma positiva. / The main objective of the present work is to propose, develop, test, and show a method for classifying the spatial cognition degree of development on different individuals. Thirty-Seven undergraduate students had their electroencephalogram (EEG) recorded while engaged in 3-D images mental rotation tasks. Their spatial cognition degree of development was evaluated using a BPR-5 psychological test. The Largest Lyapunov Exponent (LLE) was calculated from each of the 8 electrodes recorded in each EEG. The LLEs were used as input for five different classifiers: i) multi-layer perceptron artificial neural network, ii) radial base functions artificial neural network, iii) voted perceptron artificial neural network, iv) support vector machines, and v) K-Nearest Neighbors. The best result was achieved by using a RBF with 4 clusters and Puk kernel function. Also a statistical analysis of the brain activity, based in the calculated LLEs, differences between two interest groups: SI+ (participants with an alleged higher degree of development of their spatial cognition) and SI- (control group) during the performing of mental rotation of tridimensional images tasks was done.. An average difference of 16% was found between both groups. The proposed classification method can contribute and interact with other processes in the analysis and study of human spatial cognition, as in the understanding of the human intelligence at all. A better understanding and evaluation of the cognitive capabilities of an individual could suggest him elements of motivation, ease or natural inclinations, possibly affecting the decisions of his life and carrier positively.
|
5 |
Analysis and classification of spatial cognition using non-linear analysis and artificial neural networks / Análise e classificação da capacidade cognitiva espacial utilizando técnicas de análise não-linear e redes neurais artificiaisMaron, Guilherme January 2014 (has links)
O principal objetivo do presente trabalho é propor, desenvolver, testar e apresentar um método para a classificação do grau de desenvolvimento da capacidade cognitiva espacial de diferentes indivíduos. 37 alunos de graduação tiveram seus eletroencefalogramas (EEGs) capturados enquanto estavam engajados em tarefas de rotação mental de imagens tridimensionais. Seu grau de desenvolvimento da capacidade cognitiva espacial foi avaliado utilizando-se um teste psicológico BPR-5. O maior expoente de Lyapunov (LLE) foi calculado a partir de cada um dos 8 canais dos EEGs capturados. OS LLEs foram então utilizados como tuplas de entrada para 5 diferentes classificadores: i) perceptron de múltiplas camadas, ii) rede neural artificial de funções de base radial, iii) perceptron votado, iv) máquinas de vetor de suporte, e v) k-vizinhos. O melhor resultado foi obtido utilizando-se uma RBF com 4 clusters e a função de kernel Puk. Também foi realizada uma análise estatística das diferenças de atividade cerebral, baseando-se nos LLEs calculados, entre os dois grupos de interesse: SI+ (indivíduos com um suposto maior grau de desenvolvimento da sua capacidade cognitiva espacial) e SI- (grupo de controle) durante a realização de tarefas de rotação mental de imagens tridimensionais. Uma diferença média de 16% foi encontrada entre os dois grupos. O método de classificação proposto pode vir a contribuir e a interagir com outros processos na analise e no estudo da capacidade cognitiva espacial humana, assim como no entendimento da inteligência humana como um todo. Um melhor entendimento e avaliação das capacidades cognitivas de um indivíduo podem sugerir a este elementos de motivação, facilidade ou de inclinações naturais suas, podendo, provavelmente, afetar as decisões da sua vida e carreira de uma forma positiva. / The main objective of the present work is to propose, develop, test, and show a method for classifying the spatial cognition degree of development on different individuals. Thirty-Seven undergraduate students had their electroencephalogram (EEG) recorded while engaged in 3-D images mental rotation tasks. Their spatial cognition degree of development was evaluated using a BPR-5 psychological test. The Largest Lyapunov Exponent (LLE) was calculated from each of the 8 electrodes recorded in each EEG. The LLEs were used as input for five different classifiers: i) multi-layer perceptron artificial neural network, ii) radial base functions artificial neural network, iii) voted perceptron artificial neural network, iv) support vector machines, and v) K-Nearest Neighbors. The best result was achieved by using a RBF with 4 clusters and Puk kernel function. Also a statistical analysis of the brain activity, based in the calculated LLEs, differences between two interest groups: SI+ (participants with an alleged higher degree of development of their spatial cognition) and SI- (control group) during the performing of mental rotation of tridimensional images tasks was done.. An average difference of 16% was found between both groups. The proposed classification method can contribute and interact with other processes in the analysis and study of human spatial cognition, as in the understanding of the human intelligence at all. A better understanding and evaluation of the cognitive capabilities of an individual could suggest him elements of motivation, ease or natural inclinations, possibly affecting the decisions of his life and carrier positively.
|
6 |
Analysis and classification of spatial cognition using non-linear analysis and artificial neural networks / Análise e classificação da capacidade cognitiva espacial utilizando técnicas de análise não-linear e redes neurais artificiaisMaron, Guilherme January 2014 (has links)
O principal objetivo do presente trabalho é propor, desenvolver, testar e apresentar um método para a classificação do grau de desenvolvimento da capacidade cognitiva espacial de diferentes indivíduos. 37 alunos de graduação tiveram seus eletroencefalogramas (EEGs) capturados enquanto estavam engajados em tarefas de rotação mental de imagens tridimensionais. Seu grau de desenvolvimento da capacidade cognitiva espacial foi avaliado utilizando-se um teste psicológico BPR-5. O maior expoente de Lyapunov (LLE) foi calculado a partir de cada um dos 8 canais dos EEGs capturados. OS LLEs foram então utilizados como tuplas de entrada para 5 diferentes classificadores: i) perceptron de múltiplas camadas, ii) rede neural artificial de funções de base radial, iii) perceptron votado, iv) máquinas de vetor de suporte, e v) k-vizinhos. O melhor resultado foi obtido utilizando-se uma RBF com 4 clusters e a função de kernel Puk. Também foi realizada uma análise estatística das diferenças de atividade cerebral, baseando-se nos LLEs calculados, entre os dois grupos de interesse: SI+ (indivíduos com um suposto maior grau de desenvolvimento da sua capacidade cognitiva espacial) e SI- (grupo de controle) durante a realização de tarefas de rotação mental de imagens tridimensionais. Uma diferença média de 16% foi encontrada entre os dois grupos. O método de classificação proposto pode vir a contribuir e a interagir com outros processos na analise e no estudo da capacidade cognitiva espacial humana, assim como no entendimento da inteligência humana como um todo. Um melhor entendimento e avaliação das capacidades cognitivas de um indivíduo podem sugerir a este elementos de motivação, facilidade ou de inclinações naturais suas, podendo, provavelmente, afetar as decisões da sua vida e carreira de uma forma positiva. / The main objective of the present work is to propose, develop, test, and show a method for classifying the spatial cognition degree of development on different individuals. Thirty-Seven undergraduate students had their electroencephalogram (EEG) recorded while engaged in 3-D images mental rotation tasks. Their spatial cognition degree of development was evaluated using a BPR-5 psychological test. The Largest Lyapunov Exponent (LLE) was calculated from each of the 8 electrodes recorded in each EEG. The LLEs were used as input for five different classifiers: i) multi-layer perceptron artificial neural network, ii) radial base functions artificial neural network, iii) voted perceptron artificial neural network, iv) support vector machines, and v) K-Nearest Neighbors. The best result was achieved by using a RBF with 4 clusters and Puk kernel function. Also a statistical analysis of the brain activity, based in the calculated LLEs, differences between two interest groups: SI+ (participants with an alleged higher degree of development of their spatial cognition) and SI- (control group) during the performing of mental rotation of tridimensional images tasks was done.. An average difference of 16% was found between both groups. The proposed classification method can contribute and interact with other processes in the analysis and study of human spatial cognition, as in the understanding of the human intelligence at all. A better understanding and evaluation of the cognitive capabilities of an individual could suggest him elements of motivation, ease or natural inclinations, possibly affecting the decisions of his life and carrier positively.
|
Page generated in 0.084 seconds