Spelling suggestions: "subject:"cognitive states"" "subject:"aognitive states""
1 |
Brain decoding of the Human Connectome Project Tasks in a Dense Individual fMRI DatasetRastegarnia, Shima 11 1900 (has links)
Les études de décodage cérébral visent à entrainer un modèle d'activité cérébrale qui reflète l'état cognitif du participant. Des variations interindividuelles substantielles dans l'organisation fonctionnelle du cerveau représentent un défi pour un décodage cérébral précis. Dans cette thèse, nous évaluons si des modèles de décodage cérébral précis peuvent être entrainés avec succès entièrement au niveau individuel.
Nous avons utilisé un ensemble de données individuel dense d'imagerie par résonance magnétique fonctionnelle (IRMf) pour lequel six participants ont terminé l'ensemble de la batterie de tâches du “Human Connectome Project” > 13 fois sur dix sessions d'IRMf distinctes. Nous avons implémenté plusieurs méthodes de décodage, des simples machines à vecteurs de support aux réseaux complexes de neurones à convolution de graphes. Tous les décodeurs spécifiques à l'individu ont été entrainés pour classifier simultanément les volumes d'IRMf simples (TR = 1,49) entre 21 conditions expérimentales, en utilisant environ sept heures de données d'IRMf par participant.
Les meilleurs résultats de prédiction ont été obtenus avec notre modèle de machine à vecteurs de support avec une précision de test allant de 64 à 79 % (niveau de la chance environ 7%). Les perceptrons multiniveaux et les réseaux convolutionnels de graphes ont également obtenu de très bons résultats (63-78% et 63-77%, respectivement). Les cartes d'importance des caractéristiques dérivées du meilleur modèle (SVM) ont révélé que la classification utilise des régions pertinentes pour des domaines cognitifs particuliers, sur la base d’a priori neuro-anatomique. En appliquant un modèle individuel aux données d’un autre sujet (classification inter-sujets), on observe une précision nettement inférieure à celle des modèles spécifiques au sujet, ce qui indique que les décodeurs cérébraux individuels ont appris des caractéristiques spécifiques à chaque individu.
Nos résultats indiquent que des ensembles de données de neuroimagerie profonde peuvent être utilisés pour former des modèles de décodage cérébral précis au niveau individuel. Les données de cette étude sont partagées librement avec la communauté (https://cneuromod.ca), et pourront servir de benchmark de référence, pour l’entrainement de modèles de décodage cérébral individuel, ou bien des études de “transfert learning” à partir de l’échantillon collecté par le human connectome project. / Brain decoding studies aim to train a pattern of brain activity that reflects the cognitive state of the participant. Substantial inter-individual variations in functional organization represent a challenge to accurate brain decoding. In this thesis, we assess whether accurate brain decoding models can be successfully trained entirely at the individual level.
We used a dense individual functional magnetic resonance imaging (fMRI) dataset for which six participants completed the entire Human Connectome Project (HCP) task battery>13 times across ten separate fMRI sessions. We assessed several decoding methods, from simple support vector machines to complex graph convolution neural networks. All individual-specific decoders were trained to classify single fMRI volumes (TR = 1.49) between 21 experimental conditions simultaneously, using around seven hours of fMRI data per participant.
The best prediction accuracy results were achieved with our support vector machine model with test accuracy ranging from 64 to 79% (chance level of about 7%). Multilevel perceptrons and graph convolutional networks also performed very well (63-78% and 63-77%, respectively). Best Model Derived Feature Importance Maps (SVM) revealed that the classification uses regions relevant to particular cognitive domains, based on neuroanatomical priors. Applying an individual model to another subject's data (across-subject classification) yields significantly lower accuracy than subject-specific models, indicating that individual brain decoders have learned characteristics specific to each individual.
Our results indicate that deep neuroimaging datasets can be used to train accurate brain decoding models at the individual level. The data from this study is shared freely with the community (https://cneuromod.ca) and can be used as a reference benchmark, for training individual brain decoding models, or for “transfer learning” studies from the sample collected by the human connectome project.
|
2 |
BRAIN-COMPUTER INTERFACE FOR SUPERVISORY CONTROLS OF UNMANNED AERIAL VEHICLESAbdelrahman Osama Gad (17965229) 15 February 2024 (has links)
<p dir="ltr">This research explored a solution to a high accident rate in remotely operating Unmanned Aerial Vehicles (UAVs) in a complex environment; it presented a new Brain-Computer Interface (BCI) enabled supervisory control system to fuse human and machine intelligence seamlessly. This study was highly motivated by the critical need to enhance the safety and reliability of UAV operations, where accidents often stemmed from human errors during manual controls. Existing BCIs confronted the challenge of trading off a fully remote control by humans and an automated control by computers. This study met such a challenge with the proposed supervisory control system to optimize human-machine collaboration, prioritizing safety, adaptability, and precision in operation.</p><p dir="ltr">The research work included designing, training, and testing BCI and the BCI-enabled control system. It was customized to control a UAV where the user’s motion intents and cognitive states were monitored to implement hybrid human and machine controls. The DJI Tello drone was used as an intelligent machine to illustrate the application of the proposed control system and evaluate its effectiveness through two case studies. The first case study was designed to train a subject and assess the confidence level for BCI in capturing and classifying the subject’s motion intents. The second case study illustrated the application of BCI in controlling the drone to fulfill its missions.</p><p dir="ltr">The proposed supervisory control system was at the forefront of cognitive state monitoring to leverage the power of an ML model. This model was innovative compared to conventional methods in that it could capture complicated patterns within raw EEG data and make decisions to adopt an ensemble learning strategy with the XGBoost. One of the key innovations was capturing the user’s intents and interpreting these into control commands using the EmotivBCI app. Despite the headset's predefined set of detectable features, the system could train the user’s mind to generate control commands for all six degrees of freedom of adapting to the quadcopter by creatively combining and extending mental commands, particularly in the context of the Yaw rotation. This strategic manipulation of commands showcased the system's flexibility in accommodating the intricate control requirements of an automated machine.</p><p dir="ltr">Another innovation of the proposed system was its real-time adaptability. The supervisory control system continuously monitors the user's cognitive state, allowing instantaneous adjustments in response to changing conditions. This innovation ensured that the control system was responsive to the user’s intent and adept at prioritizing safety through the arbitrating mechanism when necessary.</p>
|
Page generated in 0.0598 seconds