Spelling suggestions: "subject:"hohen strongly summit operators"" "subject:"cohen strongly summit operators""
1 |
Contribuições à teoria dos operadores Cohen fortemente somantesCampos, Jamilson Ramos 05 April 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:05Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 865721 bytes, checksum: 3cb3fb14f515822a2db03f7945b5427a (MD5)
Previous issue date: 2013-04-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a study of Cohen strongly summing operators under the viewpoint
of the theory of multilinear operators ideals and polynomial ideals. Furthermore, we
introduce two new classes that generalize the concept of multilinear operators and
polynomials of this nature, namely multiple Cohen strongly summing operators and
Cohen strongly summing operators at a given point. We show that the new classes
defined, as well as the previous classes, form normed ideals of operators/polynomials
and that the class of multiple Cohen strongly summing operators forms a Banach ideal.
We also show that the construction of the class of multiple Cohen strongly summing
operators provides a holomorphy type and a coherent and compatible sequence of ideals. / Neste trabalho apresentamos um estudo dos operadores Cohen fortemente somantes
sob o ponto de vista da teoria de ideais de operadores e polinômios. Além disso,
introduzimos duas novas classes de operadores que generalizam o conceito de operadores
multilineares e polinômios desta natureza, a saber, os operadores múltiplo Cohen
fortemente somantes e os operadores Cohen fortemente somantes num dado ponto.
Mostramos que as novas classes definidas, como as anteriores, formam ideais normados
de operadores/polinômios e que os operadores múltiplo Cohen fortemente somantes
formam um ideal de Banach. Também mostramos que a construção da classe dos
operadores múltiplo Cohen fortemente somantes fornece um tipo de holomorfia e uma
sequência coerente e compatível de ideais.
|
2 |
Operadores lineares Cohen fortemente somantesLeite, Fábio da Silva de Siqueira 21 February 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-22T16:03:10Z
No. of bitstreams: 1
arquivototal.pdf: 1039820 bytes, checksum: 2e99f469c22f0b9c57e0059499fc3b27 (MD5) / Made available in DSpace on 2017-08-22T16:03:10Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1039820 bytes, checksum: 2e99f469c22f0b9c57e0059499fc3b27 (MD5)
Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The goal of our work is to study the class of the Cohen strongly summing operators.
Initially, we present basic results from Functional Analysis that are necessary for the
development of the text and then we deal with sequence spaces which will be used to
de ne and study the classes of operators involved in this work, as necessarily the class
of the absolutely summing operators. We also study the sequence space of the Cohen-
Khalil strongly (q; p)-summable sequences and the sequence space of the Cohen strongly
p-summable sequences, as a particular instance of the former. From this, we de ne
the class of the Cohen strongly p-summing operators and the class of the Cohen-Khalil
strongly (s; r; p)-summing operators which, under certain conditions, are equivalent. We
conclude with a study, from the viewpoint of the operator ideal theory, using the abstract
environment created by G. Botelho and J. R. Campos, in order to show that p and Dp
are Banach ideals and the relations dual
p = Dp and Ddual
p = p are valid, where p and p
are conjugate indexes. / objetivo de nosso trabalho e estudar a classe dos operadores Cohen fortemente p-
somantes. Inicialmente, apresentamos resultados b asicos de An alise Funcional necess arios
ao desenvolvimento do texto e, em seguida, tratamos dos espa cos de sequ^encias que ser~ao
usados na de ni c~ao e estudo das classes de operadores envolvidas no trabalho, como necessariamente
a classe dos operadores absolutamente somantes. Apresentamos tamb em o
espa co das sequ^encias Cohen-Khalil fortemente (q; p)-som aveis e o espa co das sequ^encias
Cohen fortemente p-som aveis, como caso particular do primeiro. A partir disto, de -
nimos a classe dos operadores Cohen fortemente p-somantes e a classe dos operadores
Cohen-Khalil fortemente (s; r; p)-somantes que, sob certas condi c~oes, s~ao equivalentes.
Conclu mos com um estudo, sob o ponto de vista da teoria dos ideais de operadores,
usando o ambiente abstrato criado por G. Botelho e J. R. Campos, para mostrar que p
e Dp s~ao ideais de Banach e valem as rela c~oes dual
p = Dp e Ddual
p = p, onde p e p s~ao
ndices conjugados.
|
Page generated in 0.1155 seconds