• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Ignition and Combustion of Nitromethane and Isopropyl Nitrate Monopropellant Droplets

Angela W. Mbugua (5930036) 11 June 2019 (has links)
<p>Conventional rocket propellants such as monomethyl hydrazine (MMH) and hydrazine have been used for decades due to their high specific impulse and performance. However, interest in greener alternatives, including HAN or HAN-based propellants, has grown due to high levels of toxicity and difficulties in the handling and storage of conventional fuels. Included among potential propellants are monopropellants nitromethane (NM) and isopropyl nitrate (IPN) and their blends. Though large-scale investigations on the ignition and combustion of these fuels have been done, the ignition and combustion processes of these monopropellant fuels are still not well understood. Droplet studies have been traditionally and extensively employed to decipher the influence of ambient conditions and fuel properties on ignition and combustion of different fuels. These fundamental studies allow for the isolation of different factors such as ambient temperature and initial droplet size among others, to provide a deeper understanding of their effects in overall spray combustion.</p> <p> </p> <p>The research described here seeks to add to the knowledge on the ignition and combustion processes of NM and IPN through single droplet ignition and combustion studies. To this end, the first effort has been to establish a suitable method of studying the ignition and combustion of droplets in conditions similar to those in practical systems. Droplet ignition delay measurements for NM and IPN droplets have also been conducted, and the influence of ambient temperature and droplet size has been studied. The double flame structures of NM and IPN, representative of hybrid combustion, have also been observed. In addition, the applicability of the hybrid combustion model, developed to predict mass burning rates for hypergolic fuels exhibiting hybrid burning including MMH, UDMH and hydrazine, has been assessed. Lastly, the ability of the quasi-steady droplet ignition model to predict ignition delays of IPN and NM monopropellant droplets is also discussed.</p>
2

Enhancement of Raman signals : coherent Raman scattering and surface enhanced Raman spectroscopy

Chou, He-Chun 06 July 2012 (has links)
Raman spectroscopy is a promising technique because it contains abundant vibrational chemical information. However, Raman spectroscopy is restricted by its small scattering cross section, and many techniques have been developed to amplify Raman scattering intensity. In this dissertation, I study two of these techniques, coherent Raman scattering and surface enhanced Raman scattering and discuss their properties. In the first part of my dissertation, I investigate two coherent Raman processes, coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS). In CARS project, I mainly focus on the molecular resonance effect on detection sensitivity, and I find the detection sensitivity can be pushed into 10 [micromolar] with the assistance of molecular resonance. Also, I am able to retrieve background-free Raman spectra from nonresonant signals. For SRS, we develop a new SRS system by applying spectral focusing mechanism technique. We examine the feasibility and sensitivity of our SRS system. The SRS spectra of standards obtained from our system is consistent with literature, and the sensitivity of our system can achieve 10 times above shot-noise limit. In second part of this dissertation, I study surface enhanced Raman scattering (SERS) and related plasmonic effects. I synthesize different shapes of nanoparticles, including nanorod, nanodimer structure with gap and pyramids by template method, and study how electric field enhancement effects correlate to SERS by two photon luminescence (TPL). Also, I build an optical system to study optical image, spectra and particle morphology together. I find that SERS intensity distribution is inhomogeneous and closely related to nanoparticle shape and polarization direction. However, TPL and SERS are not completely correlated, and I believe different relaxation pathways of TPL and SERS and coupling of LSPR and local fields at different frequencies cause unclear correlation between them. / text

Page generated in 0.1169 seconds