Spelling suggestions: "subject:"coherent antistokes raman dpectroscopy"" "subject:"coherent antistokes raman espectroscopy""
1 |
Characterization of Ignition and Combustion of Nitromethane and Isopropyl Nitrate Monopropellant DropletsAngela W. Mbugua (5930036) 11 June 2019 (has links)
<p>Conventional
rocket propellants such as monomethyl hydrazine (MMH) and hydrazine have been
used for decades due to their high specific impulse and performance. However,
interest in greener alternatives, including HAN or HAN-based propellants, has
grown due to high levels of toxicity and difficulties in the handling and
storage of conventional fuels. Included among potential propellants are
monopropellants nitromethane (NM) and isopropyl nitrate (IPN) and their blends.
Though large-scale investigations on the ignition and combustion of these fuels
have been done, the ignition and combustion processes of these monopropellant
fuels are still not well understood. Droplet studies have been traditionally
and extensively employed to decipher the influence of ambient conditions and
fuel properties on ignition and combustion of different fuels. These
fundamental studies allow for the isolation of different factors such as
ambient temperature and initial droplet size among others, to provide a deeper
understanding of their effects in overall spray combustion.</p>
<p> </p>
<p>The
research described here seeks to add to the knowledge on the ignition and
combustion processes of NM and IPN through single droplet ignition and
combustion studies. To this end, the first effort has been to establish a
suitable method of studying the ignition and combustion of droplets in
conditions similar to those in practical systems. Droplet ignition delay
measurements for NM and IPN droplets have also been conducted, and the
influence of ambient temperature and droplet size has been studied. The double
flame structures of NM and IPN, representative of hybrid combustion, have also
been observed. In addition, the applicability of the hybrid combustion model,
developed to predict mass burning rates for hypergolic fuels exhibiting hybrid
burning including MMH, UDMH and hydrazine,
has been assessed. Lastly, the ability of the quasi-steady droplet ignition
model to predict ignition delays of IPN and NM monopropellant droplets is also
discussed.</p>
|
2 |
Enhancement of Raman signals : coherent Raman scattering and surface enhanced Raman spectroscopyChou, He-Chun 06 July 2012 (has links)
Raman spectroscopy is a promising technique because it contains abundant vibrational chemical information. However, Raman spectroscopy is restricted by its small scattering cross section, and many techniques have been developed to amplify Raman scattering intensity. In this dissertation, I study two of these techniques, coherent Raman scattering and surface enhanced Raman scattering and discuss their properties. In the first part of my dissertation, I investigate two coherent Raman processes, coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS). In CARS project, I mainly focus on the molecular resonance effect on detection sensitivity, and I find the detection sensitivity can be pushed into 10 [micromolar] with the assistance of molecular resonance. Also, I am able to retrieve background-free Raman spectra from nonresonant signals. For SRS, we develop a new SRS system by applying spectral focusing mechanism technique. We examine the feasibility and sensitivity of our SRS system. The SRS spectra of standards obtained from our system is consistent with literature, and the sensitivity of our system can achieve 10 times above shot-noise limit. In second part of this dissertation, I study surface enhanced Raman scattering (SERS) and related plasmonic effects. I synthesize different shapes of nanoparticles, including nanorod, nanodimer structure with gap and pyramids by template method, and study how electric field enhancement effects correlate to SERS by two photon luminescence (TPL). Also, I build an optical system to study optical image, spectra and particle morphology together. I find that SERS intensity distribution is inhomogeneous and closely related to nanoparticle shape and polarization direction. However, TPL and SERS are not completely correlated, and I believe different relaxation pathways of TPL and SERS and coupling of LSPR and local fields at different frequencies cause unclear correlation between them. / text
|
3 |
High-speed hyperspectral imaging of ferroelectric domain walls using broadband coherent anti-Stokes Raman scatteringReitzig, Sven, Hempel, Franz, Ratzenberger, Julius, Hegarty, Peter A., Amber, Zeeshan H., Buschbeck, Robin, R€using, Michael, Eng, Lukas M. 11 June 2024 (has links)
Spontaneous Raman spectroscopy (SR) is a versatile method for analysis and visualization of ferroelectric crystal structures, including domain walls. Nevertheless, the necessary acquisition time makes SR impractical for in situ analysis and large scale imaging. In this work, we introduce broadband coherent anti-Stokes Raman spectroscopy (B-CARS) as a high-speed alternative to conventional Raman techniques and demonstrate its benefits for ferroelectric domain wall analysis. Using the example of poled lithium niobate, we compare the spectral output of both techniques in terms of domain wall signatures and imaging capabilities. We extract the Raman-like resonant part of the coherent anti-Stokes signal via a Kramers–Kronigbased phase retrieval algorithm and compare the raw and phase-retrieved signals to SR characteristics. Finally, we propose a mechanism for the
observed domain wall signal strength that resembles a Cerenkov-like behavior, in close analogy to domain wall signatures obtained by secondharmonic generation imaging.We, thus, lay here the foundations for future investigations on other poled ferroelectric crystals using B-CARS.
|
Page generated in 0.1268 seconds