• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 70
  • 47
  • 22
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 322
  • 123
  • 97
  • 94
  • 78
  • 67
  • 63
  • 55
  • 49
  • 45
  • 43
  • 40
  • 38
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Practical Coordination of Multi-Vehicle Systems in Formation

Bayezit, Ismail January 2014 (has links)
This thesis considers the cooperation and coordination of multi vehicle systems cohesively in order to keep the formation geometry and provide the string stability. We first present the modeling of aerial and road vehicles representing different motion characteristics suitable for cooperative operations. Then, a set of three dimensional cohesive motion coordination and formation control schemes for teams of autonomous vehicles is proposed. The two main components of these schemes are i) platform free high level online trajectory generation algorithms and ii) individual trajectory tracking controllers. High level algorithms generate the desired trajectories for three dimensional leader-follower structured tight formations, and then distributed controllers provide the individual control of each agent for tracking the desired trajectories. The generic goal of the control scheme is to move the agents while maintaining the formation geometry. We propose a distributed control scheme to solve this problem utilizing the notions of graph rigidity and persistence as well as techniques of virtual target tracking and smooth switching. The distributed control scheme is developed by modeling the agent kinematics as a single-velocity integrator; nevertheless, extension to the cases with simplified kinematic and dynamic models of fixed-wing autonomous aerial vehicles and quadrotors is discussed. The cohesive cooperation in three dimensions is so beneficial for surveillance and reconnaissance activities with optimal geometries, operation security in military activities, more viable with autonomous flying, and future aeronautics aspects, such as fractionated spacecraft and tethered formation flying. We then focus on motion control task modeling for three dimensional agent kinematics and considering parametric uncertainties originated from inertial measurement noise. We design an adaptive controller to perform the three dimensional motion control task, paying attention to the parametric uncertainties, and employing a recently developed immersion and invariance based scheme. Next, the cooperative driving of road vehicles in a platoon and string stability concepts in one-dimensional traffic are discussed. Collaborative driving of commercial vehicles has significant advantages while platooning on highways, including increased road-capacity and reduced traffic congestion in daily traffic. Several companies in the automotive sector have started implementing driver assistance systems and adaptive cruise control (ACC) support, which enables implementation of high level cooperative algorithms with additional softwares and simple electronic modifications. In this context, the cooperative adaptive cruise control approach are discussed for specific urban and highway platooning missions. In addition, we provide details of vehicle parameters, mathematical models of control structures, and experimental tests for the validation of our models. Moreover, the impact of vehicle to vehicle communication in the existence of static road-side units are given. Finally, we propose a set of stability guaranteed controllers for highway platooning missions. Formal problem definition of highway platooning considering constant and velocity dependent spacing strategies, and formal string stability analysis are included. Additionally, we provide the design of novel intervehicle distance based priority coefficient of feed-forward filter for robust platooning. In conclusion, the importance of increasing level of autonomy of single agents and platoon topology is discussed in performing cohesive coordination and collaborative driving missions and in mitigating sensory errors. Simulation and experimental results demonstrate the performance of our cohesive motion and string stable controllers, in addition we discuss application in formation control of autonomous multi-agent systems.
72

Convergence properties of a continuum damage mechanics model for fatigue of adhesive joints

Josefsson, Axel, Wedin, Johan January 2014 (has links)
The effect of the element length is examined in modelling crack growth in fatigue loading of an adhesive joint. This is done for a cohesive element using an expression for the damage evolution developed at the University of Skövde which is implemented using the UMAT subroutine in the FE-solver Abaqus. These analyses are done for pure mode I loading by analysing a DCB-specimen loaded by a pure moment. An expression is developed in which the critical element length is dependent on the geometry of the specimen (in the form of the wave number of the adhesive joint), the element length, the material properties of the adhesive (in form of the material parameters , , ), the load applied (in form of the stress in the crack tip), the time step used in the analysis and the crack growth rate. It is shown that the results converge by decreasing the element length and the time step used. Therefore an expression for the crack growth rate as a function of the remaining parameters can be determined. Another expression is thereafter developed for the element length needed in order to get a crack growth rate within a certain range of the critical element length. The results show a regular pattern but are not monotone. Therefor two different definitions of the critical element length are tested, either by defining the critical element length as the point where the error is greater than an arbitrary boundary of 1 % of a converged result or where a least square approximation of the error is within 1 % of the converged results. The first method shows a highly irregular result which makes it difficult to develop an expression out of these results. The second method on the other hand gives results that are predictable enough to develop a function out of them. This is done using a regression analysis with all parameters of a third order expression in order to get an expression.
73

Experimental studies on the erodibility and transport behaviour of dreissenid mussel deposits in an annular flume

McLean, Kelly January 2011 (has links)
Dreissenid mussels alter particle transport dynamics in the near shore environment of the Great Lakes by intercepting, retaining and recycling suspended solids that might otherwise be exported to the offshore environment (Hecky et al., 2004). Particulate materials filtered from the water column by dreissenids are subsequently released as either feces or pseudofeces (Walz, 1978). This bio-transformation process alters the nature (grain size distribution, settling velocity and density) and transport properties (critical shear stress for erosion, erosion rates and bed stability) of particulate matter in surficial sediments. While knowledge of the transport characteristics of this material is required to refine particle transport dynamics and energy flow models in the Great Lakes, few studies have been specifically conducted to directly quantify these processes. An annular flume was used to determine the bed stability, rate of erosion and critical shear stress for erosion of dreissenid biodeposits. Materials studied in the flume consisted of 1) a combination of biodeposits and surface sediments collected from dreissenid beds and 2) biodeposits harvested in a weir box with dreissenids. The results show that erosion characteristics and sediment transport properties were strongly influenced by bed age; however particle sizes did not increase in the presence of mussels as originally speculated. Bed stability increased after 7 days, with a τcrit of 0.26 Pa compared to the 2 and 14 day consolidation periods (τcrit= 0.13 and 0.15 Pa respectively). In 2010, following a 2 day consolidation period, pure biodeposits harvested in the weir box had a critical shear stress for erosion of 0.052 Pa. The decrease in bed stability found in biodeposits from 2010 compared to the 2008 biodeposit mixture, may be a result of a more diffuse biofilm developing on the highly organic substrate. The mixture of biodeposits collected in 2008 were a combination organic and inorganic materials which may be creating a nutrient limited environment, where biofilm structure consists of more tightly organized biofilm cells and as a result enhance stability in the bed sediments. The decrease observed after 14 days is likely a result of the microbes depleting their resources and dying off. Due to the added roughness the mussels created in the flume, τcrit could not be measured and critical revolutions per minute (RPM) for erosion are reported for flume runs with mussels. During experiments conducted in 2009 with pure biodeposits and mussels the critical RPM was 5.83 while in 2010 in the presence of mussels a critical RPM was not observed. Settling experiments found biodeposits from both years (2008 and 2010) had decreased settling velocities when compared to different sediment types from lacustrine environments. I speculate that the added enrichment of the surficial sediments by mussel biodeposits is enhancing the process of biostabilization and increasing the bed stability and that the presence mussels themselves may additionally be enhancing bed stability by inhibiting flow from reaching the surface sediments/biodeposits.
74

Investigation of wet paper cohesive properties

Guerrero Serrato, Alexander 09 July 2008 (has links)
Wet web paper cohesive properties behave in a similar way than tensile strength properties. The result was obtained using an unique apparatus developed by the IPST, which allows the cohesive strength determination for different wet web solids content. With the results a linear relation can be established between the cohesive strength index (obtained with the splitting apparatus) and the tensile strength index (obtained with the Instron). The splitting apparatus results can be used to calculate strain based on the work of Osterberg.
75

In-situ X-ray computed tomography characterisation and mesoscale image based fracture modelling of concrete

Ren, Wenyuan January 2015 (has links)
This study develops a 3D meso-scale fracture characterisation and modelling framework for better understanding of the failure mechanisms in concrete, by combining in-situ micro-scale X-ray computed tomography (XCT) experiments and XCT image-based finite element (FE) simulations. Firstly, sophisticated in-situ XCT experiments are conducted on concrete cubes under Brazilian-like, uniaxial and cyclic compression. Proper procedures for XCT image reconstruction and multi-phasic segmentation are identified. The fracture evolution at different loading stages is characterised and visualised as well as the detailed distributions of aggregates and voids. The Young's moduli of aggregate and cement are obtained by micro-indentation tests and used in XCT-image based asymptotic homogenisation simulations to calculate effective elastic constants of concrete cubes. The XCT technique proves very powerful in characterising and visualising the complicated 3D fracture evolution in concrete. The material properties and the segmented 3D images from the experiments are then used for FE fracture simulations with realistic aggregates, cement and voids. Image-based mesh generation algorithms are developed for 2D in a MATLAB code and identified for 3D in Simpleware. Cohesive interface elements are embedded within cement and aggregate-cement interfaces to simulate the complex nonlinear fracture. Extensive simulations of 40mm and 20mm cubes under compression and tension are carried out. Good agreements are achieved between the load-displacement curves and final crack patterns from the simulations and those from the compressive in-situ XCT tests. The XCT image-based modelling proves very promising in elucidating fundamental mechanisms of complicated crack initiation and propagation in concrete.
76

FE investigation of failure modes at the soffit of a steel plated RC beam

Khan, Mohammad Arsalan January 2014 (has links)
In recent decades, a significant research has been carried out towards understanding the behaviour of plated beam. Initially designed to achieve a desired capacity, the plated beams prematurely fail in undesirable modes of failure, such as debonding and peeling. The uncertainty related with such modes of failure poses a real challenge towards quantifying them. This field is far from being clearly understood. Therefore, an attempt is made in this thesis to accurately predict the behaviour of adhesively plated beams.
77

Fratura na interface de bimateriais : soluções analíticas e numéricas / Bi-material interface fracture: analytical and numerical solutions

Cruz, Ricardo Bonfim January 2010 (has links)
Neste trabalho, é estudada a fratura na interface de materiais dissimilares empregando duas metodologias distintas: a Mecânica da Fratura Linear Elástica (MFLE) e os métodos coesivos. O uso da MFLE aplicada a trincas situadas na interface de materiais dissimilares apresenta algumas dificuldades bem conhecidas que podem inviabilizar seu uso, como a presença de zonas de contato na frente da trinca que ocorrem em certas combinações de carregamento misto. Outra dificuldade é a inexistência de um modo I puro na ponta da trinca, o que dificulta estabelecer uma propriedade de fratura única para a interface que não dependa do carregamento. (Continuação ) As metodologias coesivas não apresentam tais limitações, em princípio. Neste trabalho é feito uma comparação das previsões fornecidas pelas duas metodologias para o caso de uma trinca restrita à interface de 2 materiais distintos, considerados elástico lineares. Observa-se uma boa correspondência na previsão obtida pelas metodologias em um caso simples de carregamento em modo I. Efeitos dinâmicos também são considerados e observa-se um aumento no grau de mistura (modos I / II) com o aumento da velocidade de propagação. Finalmente, aplica-se o método coesivo ao caso de um material composto por cilindros de alumínio em uma matriz de polimetacrilato de metila. Além de ser verificada a importância da energia de fratura de interface no comportamento global da estrutura, é mostrado que os modelos coesivos capturam o efeito de escala, contrariamente à MFLE. / In this work, bi-material interface fracture is studied by two different methodologies: Linear Elastic Fracture Mechanics (LEFM) and the cohesive methods. The application of LEFM to cracks laying at the interface of two different materials presents some well-known difficulties that can limit its use. The development of a contact zone at the crack tip, for certain combinations of loading, is one of them. Another is the fact that pure Mode I at the crack tip does not exist, which creates difficulties to define a unique interface fracture energy, independent of the loading. Cohesive methodologies do not present such limitations, in principle. In this work a comparison of the forecast obtained by the two methodologies, for a crack constrained to a bi-material interface, is considered. It can be observed a good agreement for the two methodologies, for a simple case in mode I loading. Dynamic effects are also considered and it was observed that the greater the crack propagation velocity, the greater the degree of mixture between modes I/II. Finally, the cohesive methodology is applied to a composite case, where a matrix is reinforced by a second material in the shape of cylindrical bars. Fracture energy of the interface plays a key role on the structural global behavior. Also, it is shown that cohesive models are able to capture scale effects, contrarily to LEFM.
78

Um modelo macro - mesoscópico para a simulação de fratura em concreto simples / Meso – macro model for the simulation of plain concrete fracture

Rosa, Cláudia Mesquita da January 2011 (has links)
Com a finalidade de estudar processos de fratura em concreto simples, este trabalho propõe uma escala intermediária de análise. Sendo assim, é apresentado um modelo simplificado de duas fases, o qual representa alguns elementos da microestrutra do concreto. Uma fase representa os agregados e a outra a matriz de cimento. Os agregados são considerados elástico-lineares e são representados pelos elementos finitos. Toda a não-linearidade do concreto e do processo de fratura é considerada na matriz de cimento. Tal fase é representada por interfaces coesivas, de espessura zero, entre os elementos finitos. Enquanto o modelo considera propriedades microscópicas do concreto como entrada, tem-se o comportamento macroscópico da estrutura como saída, o que é uma grande vantagem da escala proposta. Efeitos como a relação água/cimento e a densidade de agregados são introduzidos no modelo. Os resultados mostram que o modelo é capaz de captar, pelo menos qualitativamente, efeitos os quais somente são possíveis de obter com um modelo de três fases. / An intermediate scale of analysis is proposed here in order to study the fracture of plain concrete. A simplified two phases model is proposed as a concrete microstructure. One phase is the aggregate and other is the cement matrix. Aggregate is considered elastic linear and is represented by finite elements. All the non-linearity of the concrete and the fracture process is considered in the cement matrix. This phase is represented by a zero thickness cohesive interface between finite elements. While the model considers microscopic properties of the concrete as input, it delivers the macroscopic behavior of the structure as output, which is a great advantage of the proposed scale. Effects like water-cement ratio and density of aggregates are introduced in the model. Results show the model is able to capture, at least qualitatively, effects only possible to obtain by a three phases model.
79

Mécanismes et modélisations de dégradation et décollement des interfaces de couches de chaussées / Damage interface and debonding modeling in multilayered asphalt pavements

Ktari, Rahma 22 June 2016 (has links)
Si, pour les matériaux composites élaborés, de nombreuses études expérimentales ainsi que des modèles locaux de comportement ont été développés, la maîtrise du comportement des interfaces entre couches de surface ou d’assise de chaussées est actuellement un réel verrou scientifique. La méthode de dimensionnement française actuelle ne prend en compte, aux interfaces, que des conditions conventionnelles de collage ou de glissement parfait. Afin d’appréhender le comportement local de l’interphase\interface, les outils de la photomécanique apparaissent incontournables. La présente thèse propose une modélisation de l’interface rugueuse et endommageable par un modèle de zone cohésive en mode mixte. Ce manuscrit de thèse comporte trois chapitres. D’abord, le chapitre I présente un état de l’art sur les interfaces dans les matériaux et les structures et en particulier dans les couches de chaussées. Ensuite dans le chapitre II, une identification expérimentale des paramètres mécaniques et géométriques du modèle d’interface est proposée à travers des essais de traction et de cisaillement et des mesures de la texture (PMT et projections de franges). Les résultats obtenus (adhésion, rugosité,…) seront les paramètres d’entrée d’un modèle d’endommagement d’interface. Enfin, le chapitre III aborde la modélisation des interfaces entre couches de chaussées sous l’angle des modèles de zones cohésives avec la prise en compte de la rugosité géométrique. A l’issu de cette étude, une loi est proposée permettant de prendre en compte l’effet de la rugosité à une échelle locale dans une interface lisse équivalente à l’échelle globale. / Interface between bituminous layers is an important parameter for the pavement computational design.New pathologies in pavement structure require today rational methods taking into account theinterfaces behavior. Due to these concerns, the current study is based on a damage cohesive zonemodel (CZM) in mixed mode of the rough interfaces. The model was initially proposed by Allix-Ladevèze. This thesis presents a comprehensive interface modeling including delay effect, based ondamage energy release rate. The process of the present study is presented in three chapters. The firstchapter present the stat of art of interfaces. The second devoted to identify the parameters of theinterface model and material properties through advanced optical method as Digital Image Correlation(DIC) and (H-DIC). In the third chapter, a study of the influence of the elastic normal and tangentialstiffness and coupling parameters in the mixed mode on the debonding interfacial energy is presented.An analytical model provides relations between the interfaces stiffness, the coupling parameter of theCZM and the interfacial roughness. Then, a parametric numerical analysis is conducted to study theroughness effect on the interface constitutive law. Results show clearly the roughness influence in thiskind of structures. The damage behaviours predicted by the proposed model for pure mode I, puremode II and for mixed mode with taking into account of roughness are found in good agreement withexperimental results.
80

Modelos para análise de fratura do concreto simples empregando interfaces coesivas / Models for plain concrete fracture analysis using cohesive interfaces

Lens, Luciani Neves January 2009 (has links)
O concreto é um material de comportamento quase-frágil na ruptura, desenvolvendo uma zona de processo de fratura relativamente grande na ponta de uma fissura principal, na qual ocorrem fenômenos complexos. Modelos de fratura discretos são adequados para estudar tais fenômenos. Neste contexto, o presente trabalho estuda diferentes modelos de fratura discreta em concreto simples, em situação de modo I puro e modo misto (modo I e modo II, simultaneamente) empregando dois modelos constitutivos da zona coesiva, um acoplado e outro desacoplado. Considerando que a malha de elementos finitos não é adaptada durante a análise, fissuras não coincidem exatamente com as superfícies reais de fratura, resultando em componentes de tração e corte nas interfaces coesivas da frente de fissuração, as quais também não coincidem com os valores reais. Tais componentes devem diminuir com a abertura da fissura. Neste trabalho é demonstrado que apenas o modelo acoplado é capaz de lidar com as componentes espúrias do vetor tensões, e que a variável-chave é o potencial plástico empregado na integração deste vetor. Os modelos apresentados são comprovados por estudos experimentais, no caso de fratura em modo I puro com testes de flexão de vigas a 3 pontos e no caso do modo misto com testes em viga com 1 entalhe e dois entalhes a 4 pontos, viga com entalhe excêntrico ensaiada a 3 pontos e placa com duplo entalhe. Parâmetros do modo II podem ser alterados em uma faixa grande sem alterar visivelmente os resultados, pelo menos nos exemplos testados. Por outro lado, a lei coesiva para metodologia das interfaces coesivas necessita de uma lei de pré e pós-pico. Para o pós-pico, três leis são utilizadas, a saber: lei linear, bi-linear e exponencial. A escolha da lei interfere tanto no comportamento de pós-pico, como no valor de carga máxima a ser alcançado. A região de pré-pico define aberturas e deslizamentos elásticos fictícios, porém necessários para metodologia das interfaces coesivas. Neste trabalho, uma equação é proposta para determinar a lei constitutiva de pré-pico, que elimina efeitos de malha tornando a análise objetiva. / Plain concrete behaves as a quasi-brittle material in rupture, developing a relatively large process zone at the crack tip. Complex phenomena occur in this zone. Discrete fracture models are indicated to study such rupture process. In this context, the present work studies different plain concrete fracture models for mode I and mixed mode (coupled mode I and II) using two constitutive models for the cohesive zone: one is a coupled model and the other is uncoupled. Considering that the finite element mesh is not adapted during the analysis, cracks do not coincide exactly with the real fracture surfaces, resulting in components of the traction vector at the cohesive zone that are not coincident with the real values either. Such components must decrease with crack opening. In this work it is demonstrated that only the coupled model is able to deal with the spurious components of the traction vector and that the key variable in this regard is the plastic-potential used in the tractions integration. The presented models are verified by experimental tests. In the case of the pure mode I, threepoint beams are used and in the case of the mixed mode three-point and four-point beams as well as double-notched plates are used. Mode II parameters can be changed in a large range without a noticeable change in results, at least for the tested examples. On the other side, the cohesive law used in the methodology needs a pre-peak and a post-peak relation. For the postpeak, three different shapes are used: linear, bi-linear and exponential. The shape has influence in the overall post-peak behavior of the body, as well as in the peak loading reached. Pre-peak relation defines the fictitious elastic opening and the sliding necessary to complete the description of the cohesive interface methodology. In this work an equation is proposed for the pre-peak constitutive law that eliminates mesh effect problems, turning the analysis objective.

Page generated in 0.054 seconds