• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the complex cobordism of flag varieties associated to loop groups

Ozel, Cenap January 1997 (has links)
No description available.
2

Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2

Gandhi, Raj 23 August 2021 (has links)
In this thesis, we compute minimal presentations in terms of generators and relations for the oriented cohomology rings of several semisimple linear algebraic groups of ranks 1 and 2 over algebraically closed fields of characteristic 0. The main tools we use in this thesis are the combinatorics of Coxeter groups and formal group laws, and recent results of Calm\`es, Gille, Petrov, Zainoulline, and Zhong, which relate the oriented cohomology rings of flag varieties and semisimple linear algebraic groups to the dual of the formal affine Demazure algebra.
3

Symmetric Squaring in Homology and Bordism / Symmetrisches Quadrieren in Homologie und Bordismus

Krempasky, Seyide Denise 25 August 2011 (has links)
Betrachtet man das kartesische Produkt X × X eines topologischen Raumes X mit sich selbst, so kann auf diesem Objekt insbesondere die Involution betrachtet werden, die die Koordinaten vertauscht, die also (x,y) auf (y,x) abbildet. Das sogenannte 'Symmetrische Quadrieren' in Čech-Homologie mit Z/2-coefficients wurde von Schick et al. 2007 als Abbildung von der k-ten Čech-Homologiegruppe eines Raumes X in die 2k-te Čech-Homologiegruppe von X × X modulu der oben genannten Involution definiert. Es stellt sich heraus, dass diese Konstruktion entscheidend ist für den Beweis eines parametrisierten Borsuk-Ulam-Theorems.Das Symmetrische Quadrieren kann zu einer Abbildung in Bordismus verallgemeinert werden, was der Hauptgegenstand dieser Dissertation ist. Genauer gesagt werden wir zeigen, dass es eine wohldefinierte, natürliche Abbildung von der k-ten singulären Bordismusgruppe von X in die 2k-te Bordismusgruppe von X × X modulu der obigen Involution gibt.Insbesondere ist dieses Quadrieren wirklich eine Verallgemeinerung der Konstruktion in Čech-Homologie, denn es ist vertauschbar mit dem Übergang von Bordismus zu Homologie via dem Fundamentalklassenhomomorphismus. Auf dem Weg zu diesem Resultat wird das Konzept des Čech-Bordismus als Kombination aus Bordismus und Čech-Homologie zunächst definiert und dann mit Čech-Homologie verglichen.

Page generated in 0.1371 seconds