• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of micro-RNAs and their messenger RNA targets in Prostate cancer and Biological fluids

Sharma, Kanika 01 January 2014 (has links)
Prostate cancer is the second most common cancer in the United States that affects men today. To better treat this disease accurate biomarkers and successful therapeutic treatments are needed. A novel approach to understand the mechanisms behind prostate cancer tumor formation lies in identifying dysregulated micro-RNAs (miRNAs), which are a class of small (18-24 nucleotides) non-coding RNAs that regulate gene expression posttranscriptionally by either inhibiting protein synthesis or signaling messenger-RNA for degradation. Multiple miRNAs were discovered in our highly tumorigenic and metastatic prostate cancer progression model M12 cell line compared to its weakly tumorigenic P69 parental cell line. Various analyses such as human panel analyses, single-miR analyses and patient tumor biopsy samples were analyzed to determine dysregulated miRNAs that contributed to the progression and metastasis of prostate cancer. Together with performing experiments to identify miRNAs, a de novo next generation sequencing approach was applied to identify miRNAs naturally present in biological fluids of normal and healthy subjects. Since, these miRNAs are highly dysregulated in many diseases, including cancer, they can act as potential biomarkers or therapeutic targets to improve treatments for prostate cancer. Essential miRNAs studied for this research were miR-17-3p that is known to target the ErbB2 mRNA; miR-299-5p that directly targets osteopontin (OPN) mRNA, and miR-147b that directly targets many mRNAs, such as COL4A2, ALDH5A1, NDUFA4, SDHD, and IER5. A wide range of miRNAs were identified in six biological fluids: venous blood, menstrual blood, vaginal fluid, semen, saliva, and feces. There were some miRNAs that were common to all 6 body fluids, some unique to each body fluid, and some miRNAs that literature suggested could potentially be biomarkers or normalizers for body fluid characterization.
2

Genetic associations with sporadic cerebral small vessel disease

Rannikmäe, Kristiina January 2017 (has links)
Background: Cerebral small vessel disease (SVD) causes substantial cognitive, psychiatric and physical disabilities. Despite its common nature, SVD pathogenesis and molecular mechanisms remain poorly understood, and prevention and treatment are probably suboptimal. Identifying the genetic determinants of SVD will improve understanding and may help identify novel treatment targets. The aim of this thesis is to better understand genetic associations with SVD through investigating its pathological, radiological and clinical phenotypes. Methods: To unravel the genetic associations with SVD, I used three complementary approaches. First, I performed a systematic review looking at existing intracerebral haemorrhage (ICH) classification systems and their reliability, to help inform future studies of ICH genetics. Second, I performed a series of systematic reviews and meta-analyses, investigating associations between genetic polymorphisms and histopathologically confirmed cerebral amyloid angiopathy (CAA). Third, I performed meta-analyses of existing genome-wide datasets to determine associations of >1000 common single nucleotide polymorphisms (SNP) in the COL4A1/COL4A2 genomic region with clinico-radiological SVD phenotypes: ICH and its subtypes, ischaemic stroke and its subtypes, and white matter hyperintensities. Results: The reliability of existing ICH classification systems appeared excellent in eight studies conducted in specialist centres with experienced raters, although these existing systems have several limitations. In my systematic evaluation of CAA genetics, meta-analyses of 24 studies including 3520 participants showed robust evidence for a dose-dependent association between APOE ɛ4 and histopathological CAA. There was, however, no convincing association between APOE ɛ2 and presence of CAA in a meta-analysis of 11 studies including 1640 participants. Meta-analyses of five studies including 497 participants showed, contrary to an existing popular hypothesis, that while APOE 4 may increase the risk of developing severe CAA vasculopathy, there is no clear evidence to support a role of ɛ2. There were few data about the role of APOE in hereditary CAA, but in the three studies that had looked at this, there was no evidence for an association between APOE ɛ4 and CAA severity. There were too few studies and participants to draw firm conclusions about the effect of non-APOE ε2/ε3/ε4 genetic polymorphisms on CAA, but there were positive associations with TGF-β1, TOMM40 and CR1 genes in four studies. Finally, in my meta-analyses of the COL4A1/COL4A2 genomic region, three intronic SNPs in COL4A2 were associated with SVD phenotypes: significantly with deep ICH, and suggestively with lacunar ischaemic stroke and WMH. Conclusions: I have shown that while existing ICH classification systems appear to have very good reliability, further research is needed to determine their performance in different settings. For large population-based prospective studies of ICH genetics, anatomical systems are likely to be more feasible, scalable and appropriate, although they have limitations and will need to be further developed. Using systematic reviews and meta-analyses, I have confirmed a dose-related association between APOE ɛ4 and histopathological CAA, but also demonstrated that, despite popular acceptance, there is insufficient data to draw firm conclusions about the association with APOE ɛ2. I found some positive associations with CAA in other genes, which merit replication in further larger studies, and showed that there is currently insufficient data about the role of APOE in hereditary CAA. Finally, I identified a novel association between a locus in a known hereditary SVD gene – COL4A2 – and sporadic SVD. This highlights a new and successful approach for selecting candidate genes and can be expanded in future studies to include other known hereditary SVD genes.
3

The role of alpha-synuclein on transcriptional deregulation in Parkinson’s disease

Castro, Isabel Paiva de 24 April 2018 (has links)
No description available.

Page generated in 0.0144 seconds