Spelling suggestions: "subject:"old spray"" "subject:"old opray""
1 |
Consolidation of Cermet Coatings by Cold Gas Dynamic SprayingFernandez-Urrutia, Ruben January 2017 (has links)
Metal-ceramic (Cermets) materials that combine properties of both: high hardness, high wear resistance, and high working temperatures of ceramics and the ductility, toughness, and heat conductance of metals. Cold gas dynamic spraying, or simply cold spray, is a solid state thermal spray process that has been in development for the last 25 years. In the cold spray process, ductile materials are accelerated in a supersonic flow. These particles impact a substrate and adhere by plastic deformation. The continuous accumulation of these particles covers the substrate and creates a dense coating.
The cold spray process is beginning to become a popular method to consolidate some select cermet materials into coatings. This technique can be advantageous when an erosion and wear resistant coating is required. During the deposition of these coatings, researchers have shown that the ceramic particles have a dramatic influence on the deposition behavior by causing an increase in deposition efficiency and coating adhesion. These effects have been presented in several experiments but have yet to be thoroughly explained. The goal of this investigation is to increase the knowledge, on a fundamental level, with regards to the deposition behavior of metal-ceramic blending and cermet powders. Ultimately, the focus is to prove the feasibility of these coatings for the requirements needed in the engineering industry.
The first part of the investigation is a fundamental study on the deposition behavior of metal-ceramic blends with different compositions. Three theories that aim to explain the increase in deposition efficiency were proposed in the literature and further investigated in this study. One proposed mechanism for the increase in deposition efficiency was established by probability analysis to be too unlikely to contribute to the increment in deposition efficiency. The other two proposed mechanism, the presence of asperities caused by ceramic particles, and the oxide removal produced by the impact of ceramic particles, shown to play a major role in increasing the deposition efficiency. The effect of the ceramic particle morphology on the deposition behavior of metal-ceramic blending was studied in the second part of the investigation. This study greatly complements the previous one adding more depth to the investigation and confirming results. The increment in deposition efficiency normally seen with the addition of small amounts of angular alumina was not seen when spherical alumina was added instead. The creation of asperities during deposition was explored for the two morphologies and was determined that spherical alumina does not produce the same asperities at the surface. In addition, the coating sprayed with spherical alumina showed very little ceramic retention compared with the ones sprayed with angular alumina. These results have a direct impact on the mechanical properties of the coatings. Wear resistance for coatings sprayed with spherical alumina showed no improvement compared with pure aluminum coating due to the low ceramic content. Hardness was lower in coatings sprayed with spherical alumina for the same feedstock powder composition but was harder when the final coating composition was considered. Adhesion strength significantly increases with the addition of ceramic content in the feedstock powder; this increase was greater for coating sprayed with spherical alumina.
The third part of the investigation focuses on understanding the mechanism of deposition for cermet particles with various morphologies. Six commercially available CrC-NiCr powders were studied, varying in morphology and metal/ceramic ratio. Spherical powders led to the erosion of the substrate and no coating was formed. Porous agglomerated and sintered powder lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome of powder depended on the initial metal/ceramic ratio, powders with 25%wt.NiCr led to erosion while 35%wt.NiCr powders led to a dense coating. Finally blended ceramic metal powders also lead to a successful coatings. All coatings obtained had lower ceramic content than the initial feedstock powder. Interrupted deposition tests, FEA analysis, and SEM observation were used to draw conclusions on the deposition behavior and explain the results.
Finally, the last part of this investigation aims to apply the knowledge learned to an applied engineering problem. The problem that is targeted is the replacement of chrome plating for the aerospace industry. A commercially available cermet powder CrC-NiCr (65/35) was proposed as a replacement of chromium plating as well as a restoration for this coating and its alternatives (electroless nickel-plating, and WC-Co-Cr HVOF). The coatings and restoration were analyzed by SEM and tested by strip rupture rest, neutral salt spray fog, and fluid immersion testing. The adhesion strength, porosity, and hardness of the cold spray coating was also tested. The deposition and restoration of coatings were successful; a hard and dense coating was obtained with good adhesion strength. The process of restoration chromium-plating and its alternatives was also developed with a clean interface was achieved in each case. Coatings and restoration passed strip to rupture rest as well as fluid immersion test in two selected industry fluids. Neutral salt spray fog test revealed that the cold spray coating and repairs may have a path that allows the solution to penetrate the substrate and start the corrosion process. This behavior was found in a few select spots and should be further investigated. Overall, the coating proved to have potential as an alternative of chromium-plating or to restore damaged hard coatings.
|
2 |
Optimizing the Cold Spray Process Performance: Influence of the Initial Substrate, Coating, and Particle Impact TemperaturesOrtiz Fernandez, Roberto 11 August 2022 (has links)
It is well-known that the performance of the CS process is enhanced by increasing the process gas stagnation temperature, as this increases the gas velocity, and thus the particle velocity (kinetic energy). However, the influence of the initial substrate, coating, and particle impact temperatures on the CS process performance is still a topic that has barely been studied. This work focuses on establishing in a more systematic way how the initial substrate, coating, and particle impact temperatures affect the CS process performance by decoupling these three variables from the general spray parameters, namely the gas stagnation temperature. This decoupling is of crucial importance if one wants to be able to study the effect of each temperature and this approach has never been reported anywhere so far.
In this work, two feedstock powder materials are used: pure aluminum and Inconel 718. The substrate material selected is Ti-6Al-4V. Therefore, the observations provided in this thesis are valid for the deposition of aluminum-on-Ti-6Al-4V and Inconel718-on-Ti-6Al-4V. To increase and control the initial substrate and coating temperatures while ensuring proper decoupling of other spray parameters, an induction heating system is used with the CS process. To control the initial particle temperature, independently from the gas stagnation temperature, powder preheater units are used. The powder is fed in the diverging section of the nozzle to avoid the uncontrollable heating usually observed by feeding the powder in the converging section.
Single-particle impact testing and splat adhesion strength testing are carried out to evaluate the effect of the initial substrate temperature on individual particles. This is investigated using pure aluminum as the feedstock powder material. A finite element modeling is also carried out to complement the experimental results. The influence of the initial substrate temperature on the deposition process is quantified by measuring the deposition efficiency and coating porosity values. Micro-hardness testing and adhesion strength testing are used to characterized the as-sprayed coating mechanical properties.
To study the influence of the coating temperature on the CS process performance, both powders, pure aluminum and Inconel 718, are used. The role of the coating temperature on the CS process is assessed by measuring the deposition efficiency and coating porosity values for the deposition of both powders. Micro-hardness, adhesion, and tensile strength measurements of the pure aluminum coatings is carried out. For the Inconel 718 coatings, only micro-hardness testing is conducted.
To characterize the influence of the particle impact temperature on the CS process, Inconel 718 is used. The particle impact temperature is predicted using a computational fluid dynamics model. Deposition efficiency, coating porosity values, and micro-hardness testing are used to characterize the influence of the particle impact temperature on the CS process.
The results in this thesis provide a path to optimize the CS process performance based on the influence of the initial substrate, coating, and particle impact temperatures. This work also demonstrates that other variables, such as particle impact velocity and feedstock powder material hardness, must also be considered to optimize the CS process performance through the use of different temperatures.
|
3 |
Méthodes morphologique et par éléments finis combinées pour une nouvelle approche de la modélisation 3D du dépôt par projection dynamique par gaz froid (« cold spray ») / A new approach to 3D modeling of the cold spray process, combining morphological methods and finite element simulationsDelloro, Francesco 08 July 2015 (has links)
L'objectif principal de cette étude était de réaliser une modélisation du procédé cold spray, fondée sur l'observation expérimentale et sur des modèles physiques capables de prédire la microstructure du dépôt en fonction de la morphologie de la poudre et des paramètres de projection. Pour y arriver, le travaux se sont organisés autour de trois axes principaux de recherche : caractérisation de la poudre en 3D, simulations d'impact par éléments finis et modélisation d'empilement. Un procédé innovant de caractérisation morphologique de la poudre en 3D, utilisant la microtomographie par rayons X, a été développé. Le traitement des images résultantes a permis d'isoler les particules individuelles, regroupées dans une bibliothèque 3D d'environ 18000 objets. Leur taille et forme ont été caractérisées quantitativement. La méthode de partitionnement des données dite « K-means » a été utilisée pour la répartition des particules en 7 classes de forme.Le deuxième axe de recherche portait sur la simulation d'écrasement des particules, par la méthode des éléments finis (logiciel Abaqus, approche lagrangienne). L'utilisation d'outils de maillage adaptés a permis de réaliser des simulations d'écrasement des particules réelles (en provenance de la bibliothèque 3D). L'automatisation de ces simulations visait la possibilité d'en effectuer en grand nombre mais, face aux problèmes de robustesse rencontrés, le nombre de simulations menées à bien fut limité.Le troisième axe de recherche portait sur le développement d'un modèle d'empilement itératif, fondé sur l'utilisation des résultats des simulations d'écrasement. Ce modèle a été mis en place en 2D par simplicité. Différentes implémentations ont été essayées mais leur développement ne fut pas suffisamment abouti pour l'application à des cas pratiques.La validation des modèles s'est limitée aux simulations d'impact par éléments finis. Les deux types de splats (Ta sur Cu et Ta sur Ta), exigeant de méthodes d'observation expérimentale différentes, ont été traités séparément. Les premiers ont pu être directement observés par microtomographie et regroupés dans une bibliothèque 3D des splats Ta sur Cu. Ensuite, ils ont été comparés, de façon statistique mais aussi individuellement, aux correspondants simulés sans qu'aucune divergence évidente n'apparaisse. Le cas des Ta sur Ta est, en revanche, compliqué du fait de l'homogénéité du système qui empêche l'utilisation directe de la microtomographie. Bien que différentes méthodes visant à apporter une couche du contraste entre particule et substrat aient été essayées, la construction d'une bibliothèque 3D des splats Ta sur Ta n'a pas été possible.L'optimisation des poudres (choix de la granulométrie et de la forme, en vue d'une application donnée) est une des utilisations envisagées pour le modèle d'empilement, ainsi que la simulation de la projection de poudres composites (métal et oxyde). L'inclusion dans le modèle des transformations de phase ouvrirait la porte de la famille de la projection plasma ou de la fabrication additive. Plus généralement, la philosophie derrière la modélisation d'empilement développée dans cette thèse peut être appliquée à tout procédé où l'apport de matière est fait à partir d'une « poudre » subissant une certaine transformation. Enfin, le couplage avec un modèle de comportement pourrait permettre l'estimation de certaines propriétés physiques (par exemple, les conductivités thermique et électrique), dépendant de la microstructure du dépôt. / This study on the cold spray process aimed at achieving an original coating build-up model, capable of predicting the resulting microstructure as a function of powder morphology and process parameters. The work focused on three main interrelated subjects: 3D powder characterization, simulation of individual impacts on a flat substrate by the finite element method and deposition build-up modeling.An innovative method based on microtomographical observations was used for 3D characterization of the powder. Image analysis allowed to separate single powder particles and to gather them into a 3D collection containing approximatively 18 000 objects. Their size and shape were quantitatively measured. A cluster analysis method (K-means) was then applied to this data set to divide the particles into 7 classes based on their shape.The second main research topic consisted in performing particle impact simulations on a flat substrate by the finite element method (using the commercial software Abaqus). The use of dedicated meshing tools allowed to simulate the impact of real particles, as observed by microtomography. Scripting techniques were used to carry out a large number of these simulations but, due to limited robustness of the procedure, only few of them were successfully conducted.The third research area focused on the development of a deposition build-up model (in 2D to allow a simpler implementation). Data from finite element results were interpolated and used in an iterative simulation, where impacting particles were deposited one by one. Different approaches were tested but the development of the model could not be completed in the framework of this thesis.Model validation could be performed on finite element simulations. The two kinds of splats (Ta on Cu and Ta on Ta) were considered separately. Concerning the first, direct microtomographical imaging could be applied, due to the heterogeneity of materials. Splats were observed, individually separated and gathered in a 3D collection as done before with powder particles. Simulated and observed splats could then be compared on a statistical basis. No particular discrepancy was observed, confirming the impact simulation method used. The second kind of splats (Ta on Ta) was complicated by the homogeneity of the materials, preventing the use of microtomography. The deposition (before spraying) of a contrast layer between Ta substrate and Ta particle was tried by different techniques. The only method giving exploitable results was the chemical vapor deposition of a Fe layer onto the powder particles. However, the small number of adherent particles and the weak contrast obtained in the images prevented the use of the methods already applied to powder particles and Ta splats onto Cu.The optimization of powder granulometry and shape (towards a specific application) is one of the main expected applications of the deposition build-up model, together with the simulation of composite powders (typically, metal and oxide). The involvement of phase transformation phenomena into the model could extend its application to the whole family of thermal spray processes (plasma, HVOF, etc.) or to other additive manufacturing techniques. In general, the philosophy behind our modeling approach could be applied to every manufacturing/coating technique where the supply material is in powder form and undergoes a certain transformation during the process. Finally, the coupling of such a model with homogenization techniques would allow the prediction of macroscopic properties depending on deposit microstructure (e.g. thermal or electrical conductivity).
|
4 |
Application of Materials Characterization, Efficacy Testing, and Modelling Methods on Copper Cold Spray Coatings for Optimized Antimicrobial PropertiesSundberg, Kristin L 18 April 2019 (has links)
The Copper Development Association (CDA) has identified over 450 copper alloys registered with the U.S. Environmental Protection Agency (EPA) as antimicrobial. With growing antibiotic resistance, there is a need for copper coatings with increased antimicrobial capability. Cold spray is a high velocity, high deposition rate process that forms dense coatings with little to no oxides or inclusions. It is possible that this process contributes to the increased antimicrobial capability of copper cold spray coatings as compared to other additive processes. The focus of this effort is to understand the effects of powder production and cold spray process parameters on copper cold spray coatings in order to optimize antimicrobial properties. Specifically, this work looks at the differences in conventional and nanomaterial copper cold spray coatings. Materials characterization and test methods show differences in adhesion, microstructure, corrosion, mechanical properties, and surface topography. Materials data is compared against Abaqus FEA software model outputs, and antimicrobial efficacy test data, based on the EPA approved procedure, is used to support materials observations and modelling outputs.
|
5 |
Microstructure and Mechanical Properties of Cold Sprayed Aluminum and Titanium AlloysBond, Trevor 25 November 2019 (has links)
A combination of experimental and computational methods is used to explore the microstructure and mechanical behavior of cold sprayed 6061 aluminum alloy and Ti-6Al-4V alloy and their substrate materials. A variety of microscopic methods are used for characterization of the microstructure. The indentation size effect and characteristic length of strain gradient plasticity for the substrate materials are determined. An FEA simulation describes the behavior of a worn Berkovich nanoindenter. Stress strain is studied experimentally in the substrate materials for future comparison with bulk cold-sprayed materials. Abaqus FEA models are used to simulate a single particle impact for a particle with an oxide layer using a linear Johnson-Cook plasticity model and a bilinear Johnson-Cook plasticity model. The implications of the results are discussed for cold spray processes.
|
6 |
Estudio de la deformación en impacto en el proceso de Cold SprayBarrientos Laury, Felipe Rodrigo January 2018 (has links)
Memoria para optar al título de Ingeniero Civil Mecánico / Cold Spray es un proceso de manufactura aditiva en estado sólido, consistente en la deposición de material particulado en un substrato a altas velocidades. La gran ventaja de este proceso con respecto a otros procesos de Thermal Spray es que requiere de temperaturas de deposición bajo el punto de fusión, evitando problemas de difusión de gases y cambios microestructurales que limiten el rango de utilización de este proceso, además de disminuir la cantidad de calor necesario para realizar la adhesión.
El objetivo principal de este trabajo de título fue estudiar la deformación por impacto de partículas de níquel y titanio en el proceso de Cold Spray a través de simulaciones numéricas. Los objetivos específicos fueron establecer una relación entre velocidad de impacto, temperatura y ángulo de impacto, con la adhesión de partículas con un substrato; analizar el impacto de las partículas con substratos de un mismo o diferente material; y determinar variables que permitan una deposición efectiva.
Se realizaron simulaciones de impacto de una partícula esférica de 20 [µm] y un substrato, utilizando níquel y titanio. Se usaron como variables, las propiedades de los materiales, la temperatura, velocidad y ángulo antes del impacto, para obtener los esfuerzos, deformación y temperatura durante el impacto.
Como recurso para realizar este trabajo de título, se trabajó con el software Abaqus/Explicit, con su módulo de análisis Abaqus/Explicit con un mallado Arbitrary Lagrangian Eulerian, para evitar la deformación excesiva.
En total, se realizaron 40 simulaciones de impacto, analizados con 2 métodos distintos; el primero investigó la presencia de ASI (Adiabatic Shear Instability), no implicando la adhesión de la partícula con el substrato. El otro método logró obtener diferencias visibles a distintas velocidades (alrededor de los 500 y 600 [m/s] en los casos de níquel sobre níquel y titanio sobre titanio, y entre 600 y 700 [m/s] en los casos de níquel sobre titanio y titanio sobre níquel).
A distintas temperaturas, aumentó la energía de adhesión a mayores temperaturas, y a distintos ángulos de impacto (disminuyendo la adhesión con un mayor ángulo de impacto).
Si bien, las velocidades críticas logradas para níquel y titanio resultaron menores que las estimadas por la literatura [15] [28] [29], los resultados de la literatura estudiaron la presencia de ASI, lo cual no implica adhesión. Por lo tanto, existe la posibilidad de que los resultados obtenidos en este trabajo de título sean ciertos, sólo necesitarían demostración experimental para confirmar las velocidades críticas.
|
7 |
Computational Thermodynamic and Kinetic Modeling and Characterization of Phase Transformations in Rapidly Solidified Aluminum Alloy PowdersTsaknopoulos, Kyle Leigh 17 April 2019 (has links)
Cold Spray is a solid-state additive manufacturing process that uses metallic feedstock powders to create layers on a substrate through plastic deformation. This process can be used for the repair of mechanical parts in the aerospace industry as well as for structural applications. Aluminum alloy powders, including Al 6061, 7075, 2024, and 5056, are typically used in this process as feedstock material. Since this process takes place all in the solid state, the properties and microstructure of the initial feedstock powder directly influence the properties of the final consolidated Cold Spray part. Given this, it is important to fully understand the internal powder microstructure, specifically the secondary phases as a function of thermal treatment. This work focuses on the understanding of the internal microstructure of Al 6061, 7075, 2024, and 5056 through the use of light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, electron backscatter diffraction, and differential scanning calorimetry. Thermodynamic models were used to predict the phase stability in these powders and were calibrated using the experimental results to give a more complete understanding of the phase transformations during thermal processing.
|
8 |
Investigation of the Effect of Oxides on the Critical Impact Velocity during the Cold Spray Process of High Purity Aluminum PowderChampagne, Victor K, Jr. 13 December 2018 (has links)
The objective of the thesis is to understand the particle/substrate interaction of micron-sized High Purity (HP) aluminum (Al) powder particles with varying surface oxide/hydroxide layers, during single particle impact and determine the critical impact velocity (CIV). Advancements in analytical techniques enable in-situ supersonic impact of individual metallic micro-particles on substrates with micro-scale and nanosecond-level resolution. This novel capability allowed direct observation and measurement of a material-dependent threshold velocity, above which the particle underwent impact-induced material ejection and adhered to the substrate, (critical impact velocity). The data was then compared to empirical, as well as predicted values of the CIV from published data that were based upon theoretical iso-entropic fluid dynamics models. A major emphasis of this research was to perform, in-depth characterization of the Al powder in the as-received, gas atomized state and subsequent to controlled temperature and humidity exposure (designed to form a prescribed oxide and/or hydroxide surface layer) and finally after single particle impact. Analytical techniques including XPS, ICP, IGF, TEM and SEM were performed to determine the species of oxide and/or hydroxide, bulk chemical composition, oxygen content and thickness of the surface oxide/hydroxide layer. Finally, bulk samples of material were produced by the cold spray process, from powder representing select test groups and subsequently characterized to determine tensile and hardness properties, chemistry, microstructure and conductivity. A fundamental understanding of the role of surface oxidization in relationship to particle deformation during impact and the bonding mechanism will be applicable toward the development of optimized parameters for the cold spray (CS) process. Results from this study will aid in the development of industrial practices for producing, packaging and storing Al powders.
|
9 |
Cold spray deposition of WC-CoCouto, Miguel Pereira de Magalhães e January 2011 (has links)
Tese de mestrado integrado. Engenharia Metalúrgica e de Materiais. Universidade do Porto. Faculdade de Engenharia. 2011
|
10 |
Analysis of the cold gas spraying process and determination of selected properties of metallic coatings on polymers / L'analyse du processus de la projection à froid et la détermination de certaines propriétés des revêtements projetés de poudres métalliques sur les substrats en polymères / Analiza procesu natryskiwania zimnym gazem oraz określenie wybranych właściwości powłok metalowych na polimerachMalachowska, Aleksandra 22 March 2016 (has links)
Le but de cette thèse de doctorat état d’analyser la possibilité de la métallisation des couches des polymères à l’aide de la méthode de pulvérisation avec du gaz froid sous une basse pression. Deux substrats thermoplastiques et cinq poudres métalliques ont été étudiés. Les substrats étaient le polycarbonate amorphe et le polyamide 6 semicristalin. La poudre était : sphérique, globulaire, dendrique cuivre, aluminium et étain. Le processus de déposition s'est avéré beaucoup plus complexe que dans le cas du substrat de métal. Les problèmes étaient, entre autres : faible dureté du substrat, comportement fragile dans les basses températures, l'amollissement thermique dans des températures très basses. Le travail a commencé avec un calcul de la vitesse dans une basse pression du processus de pulvérisation a froid. La vitesse calculée pour toutes les poudres sauf l'étain étaient au-dessous de la vitesse critique pour les paramètres acceptables en ce qui concerne la déposition des polymères. Les premières épreuves ont confirmé que la déformation des particules de poudre n'était pas suffisante. Dans le cas de cuivre, il était impossible d'obtenir le revêtement. En plus, la force de liaison était très faible - les revêtements étaient delaminés spontanément. Deux mesures ont été entreprises pour améliorer les résultats : réduire la vitesse critique de la poudre et insérer des couches intermédiaires. Avec ces deux moyens, il a été possible d'obtenir les revêtements en cuivre et alluminium sur PA6 et PC. En s'appuyant sur l'étude, des conditions optimales pour la déposition de revêtement ont été choisies pour la caractérisation. La caractérisation des revêtements a inclu : l'analyse structurelle avec le microscope à la lumière et électronique à balayage, mesure d'adhésion, mesures du module d'Young, résistivité électrique, mesures de micro-dureté, mesures de coefficient de dilatation thermique, mesures de contenu d'oxygène et la simulation FEM pour étudier le mécanisme de déposition. / The aim of this Phd thesis was to analyze the possibility of metallization of polymers surface using a Low-Pressure Cold Gas spraying method. Two polymers substrate: polyamide 6 (Pa 6) and polycarbonate (PC) were investigated. The coatings were deposited using: tin, aluminium and copper powders. Within the framework of this work powders particles velocity and temperature was calculated during spraying process. The obtained particle velocity was compared to the critical velocity to select initial spraying conditions. Direct spraying on polymers substrate brought acceptable properties only for tin powder. Aluminium coatings delaminated spontaneously after spraying process. In case of copper powder deposition of continuous layer was impossible. Next, the influence of powder morphology, heat treatment of the feedstock material and the use of interlayers on the deposition process was investigated. Consequently, aluminium and copper coatings were obtained on both polymers. For a set of received coatings (Sn, Al, Cu) microstructure was observed and the results of adhesion, resistivity, micro-hardness, Young's modulus, and oxygen content in powders and coatings measurements were given. The bonding mechanism of the powder particles with substrate material was investigated using simulation of impact of copper and tin particle on polyamide substrate in Abaqus program. The simulation results were compared to experimental results. The dissertation was summed up with conclusion and possibilities of further research. / Celem niniejszej rozprawy doktorskiej była analiza możliwości metalizacji powierzchni tworzyw sztucznych za pomocą metody niskociśnieniowego natryskiwania zimnym gazem (z ang. Low-Pressure Cold Spraying – LPCS). Jako podłoże zastosowano dwa polimery: poliamid 6 (PA 6) i poliwęglan (PC). Powłoki zostały wykonane z użyciem proszków: cyny, aluminium i miedzi. W ramach pracy obliczono prędkość oraz temperatura cząstek proszku podczas procesu natryskiwania. Na podstawie porównania otrzymanych wyników prędkości cząstek proszku do prędkości krytycznej dobrano wstępne parametry procesu. W przypadku bezpośredniego natryskiwania na tworzywo jedynie powłoki cynowe charakteryzowały się akceptowalnym właściwościami. Powłoki aluminiowe miały tendencje do samoistnego odspajania. W przypadku prób nanoszenia proszku miedzi nie udało się uzyskać ciągłej warstwy. W dalszej kolejności zbadano wpływ morfologii i obróbki cieplnej proszku oraz zastosowania międzywarstw na proces formowania powłoki, co pozwoliło na uzyskanie powłok aluminiowych i miedzianych na powierzchni obydwu tworzyw sztucznych.Dla kompletu uzyskanych powłok (Sn, Al, Cu) przedstawiono zdjęcia mikrostruktury oraz wyniki pomiarów wyniki pomiarów przyczepności, rezystywności, mikrotwardości,modułu Younga, zawartości tlenu w proszku i powłoce. Mechanizm wiązania cząstek proszku z materiałem podłoża przeanalizowano za pomocą symulacji uderzenia cząstek miedzi i cyny w podłoże poliamidowe w programie Abaqus. Wyniki z symulacji zostały porównane do rezultatów eksperymentalnych. Całość pracy podsumowano wnioskami oraz przedstawiono możliwości dalszych badań.
|
Page generated in 0.058 seconds