• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Symbiotic adaptation of prokaryotic microorganisms in extreme deep-sea environments

Rincón Tomás, Blanca 06 December 2018 (has links)
No description available.
2

Embryology, larval ecology, and recruitment of "Bathymodiolus" childressi, a cold-seep mussel from the Gulf of Mexico

Arellano, Shawn Michelle, 1977- 06 1900 (has links)
xx, 198 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / "Bathymodiolus" childressi is a mixotrophic mussel from Gulf of Mexico cold seeps. There is no genetic differentiation of mussels among the seeps, suggesting wide dispersal of their larvae. This dissertation describes larval biology, ecology, and recruitment dynamics for "B." childressi. Cleavage is spiral at a rate of one per 3-9 hours, with blastula larvae hatching by 40 hours at 7-8 à à °C. At 12-14 à à °C, D-shell veligers developed by day 8 without being fed. Egg size and shell morphology indicate planktotrophy, but feeding was not observed. Embryos developed normally from 7-15 à à °C and 35-45 ppt. Although survival of larvae declined with temperature, some survived at 25 à à °C. Larval survivorship was similar at 35 and 45 ppt. Oxygen consumption increased from blastulae to trochophores and was higher for "B." childressi than for shallow-water mussel trochophores. Estimated energy content of "B." childressi eggs was greater than the energy content of shallow-water mussel eggs. An energetic model predicts that the eggs provide sufficient energy for "B." childressi trochophores to migrate into the euphotic zone. In fact, "B." childressi veligers were found in plankton tows of surface waters. The influence of recruitment on fine-scale distributions of adults at the Brine Pool cold seep was examined through manipulative field experiments. The "Bathymodiolus" childressi population at this site has a distinct bimodal size structure that shifts across an environmental gradient. New recruits of "B." childressi are abundant in the inner zone, where methane and oxygen are high and sulfide is low, leading to the inference that larvae settle preferentially there. Experiments were placed in the inner and outer zones and 2-m away from the bed. The number of larvae collected in traps did not differ among the three zones, nor did settlement density. Juveniles survived and grew in all zones, but more caged than uncaged juveniles survived. Mortality of uncaged juveniles was similar in all zones, suggesting that predation does not cause the bimodal distribution. These results suggest that the bi-modal distribution cannot be attributed to settlement preferences or juvenile mortality, but instead to migration or early post-settlement mortality. This dissertation includes my co-authored materials. / Adviser: Craig M. Young
3

Benthic invertebrate assemblages and sediment characteristics

Boyd, Sheree January 2009 (has links)
Cold seep ecosystems in the deep sea are fuelled by chemosynthetic processes based on methane emission to the sediment surface from gas hydrate disassociation, methanogenesis or thermogenic processes. While cold seep ecosystems have been studied in the last three decades worldwide, little is known about New Zealand’s cold seep habitats and associated fauna. A joint German-New Zealand cruise to the Hikurangi Margin in early 2007 enabled biological and sediment sampling to investigate the biological and sedimentological relationships and variability of seeps and their faunal diversity. Multi-disciplinary approaches were employed that included Xray radiography, stratigraphic descriptions, lebensspuren traces analysis, sediment grain size analysis, determination of total organic content, carbonate content and its stable isotopic composition, and analysis of benthic invertebrate assemblages of seep habitats. The results of this study revealed three distinctive habitats and associated fauna based on the sediment characteristics and faunal type. Habitat 1 includes all sites pertaining to Omakere Ridge, a seep-related habitat comprised of layers of very poorly sorted, sandy silt, shell hash and bands of methane-derived authigenic aragonitic carbonate nodules with low total organic content (TOC). Due to the characteristics of the sediments and death assemblages of molluscs, it is inferred that Habitat 1 methane seepage is actively diffusive, waning or dormant. Habitat 2 describes sites that are either non-seep or relic and applies to those at Bear’s Paw and Kaka. Habitat 2 constituted of shell hash overlain with very poorly sandy silt, and low carbonates content and low to medium TOC. Habitat 3 describes non-seep related habitats, and includes all sites of the Wairarapa region and one reference site from Kaka also falls into this category. Sediments for Habitat 3 constituted poorly sorted silt with high TOC and low carbonate content which can be explained by their close proximity to land and converging sea currents. The mineral components of the background siliciclastic sediments for all sites studied originated in the Tertiary mudstone of the East Coast Basin. The characteristics of seep habitats of the Hikurangi Margin were comparable to that of the Northern Hemisphere modern seep counterparts, although the abundance and distributions of seep fauna were low. Results from this research have enhanced our understanding on the spatial and variability of methane fluxes and their affects on the duration of cold seep ecosystems, especially for New Zealand. However, more such studies are essential to increase our understanding of seep sediments and explain disturbance-sediment-benthic invertebrate interactions.
4

Benthic invertebrate assemblages and sediment characteristics

Boyd, Sheree January 2009 (has links)
Cold seep ecosystems in the deep sea are fuelled by chemosynthetic processes based on methane emission to the sediment surface from gas hydrate disassociation, methanogenesis or thermogenic processes. While cold seep ecosystems have been studied in the last three decades worldwide, little is known about New Zealand’s cold seep habitats and associated fauna. A joint German-New Zealand cruise to the Hikurangi Margin in early 2007 enabled biological and sediment sampling to investigate the biological and sedimentological relationships and variability of seeps and their faunal diversity. Multi-disciplinary approaches were employed that included Xray radiography, stratigraphic descriptions, lebensspuren traces analysis, sediment grain size analysis, determination of total organic content, carbonate content and its stable isotopic composition, and analysis of benthic invertebrate assemblages of seep habitats. The results of this study revealed three distinctive habitats and associated fauna based on the sediment characteristics and faunal type. Habitat 1 includes all sites pertaining to Omakere Ridge, a seep-related habitat comprised of layers of very poorly sorted, sandy silt, shell hash and bands of methane-derived authigenic aragonitic carbonate nodules with low total organic content (TOC). Due to the characteristics of the sediments and death assemblages of molluscs, it is inferred that Habitat 1 methane seepage is actively diffusive, waning or dormant. Habitat 2 describes sites that are either non-seep or relic and applies to those at Bear’s Paw and Kaka. Habitat 2 constituted of shell hash overlain with very poorly sandy silt, and low carbonates content and low to medium TOC. Habitat 3 describes non-seep related habitats, and includes all sites of the Wairarapa region and one reference site from Kaka also falls into this category. Sediments for Habitat 3 constituted poorly sorted silt with high TOC and low carbonate content which can be explained by their close proximity to land and converging sea currents. The mineral components of the background siliciclastic sediments for all sites studied originated in the Tertiary mudstone of the East Coast Basin. The characteristics of seep habitats of the Hikurangi Margin were comparable to that of the Northern Hemisphere modern seep counterparts, although the abundance and distributions of seep fauna were low. Results from this research have enhanced our understanding on the spatial and variability of methane fluxes and their affects on the duration of cold seep ecosystems, especially for New Zealand. However, more such studies are essential to increase our understanding of seep sediments and explain disturbance-sediment-benthic invertebrate interactions.
5

<p>Controls on Calcium Isotopes in a Cold Seep Crust from the Northern Gulf of Mexico Continental Slope</p>

Berger, Mariana Abigail 09 August 2023 (has links)
No description available.
6

Diagenetic evolution of some modern and ancient cold seep-carbonates from East Coast Basin, New Zealand.

Ewen, Sarah Maree January 2009 (has links)
Cold seep-carbonates are the microbially mediated by-products of the anaerobic oxidation of methane (AOM) at seafloor cold seeps, and are widespread about modern continental margins and in the geologic record. Some modern and Miocene examples of cold seep-carbonates from the East Coast Basin, North Island, New Zealand have been analysed in this study, to characterise and determine their carbonate fabrics, elemental and mineralogical composition, and stable δ18O and δ13C isotope signatures, so as to provide insights into the diagenetic changes associated with the lithification and burial of seep-carbonates. The ancient samples were collected from the onshore middle Miocene Tauwhareparae (TWP) seep deposit, while the modern samples were obtained from the National Institute of Water and Atmosphere (NIWA) Cruise TAN0616 (November 2006) from Ritchie Ridge, offshore Hikurangi Margin. A paragenetic sequence of diagenetic events involving early aragonitic phases, followed by late calcitic phases is defined for the seep-carbonates. This sequence likely has relevance for understanding the fluid-cement histories of seep-carbonates more widely. Two main carbonate mineralogies occur in each of the sample groups - modern samples are aragonitic or dolomitic, while the ancient ones consist dominantly of either aragonite or calcite. Thus, aragonite common to both sample groups, and is interpreted to represent the initial primary carbonate precipitate in hydrocarbon seep provinces under specific fluid flux and local pore-water chemistry conditions. Aragonite morphologies range from microcrystalline carbonate ('micarb'), to acicular aragonites that may form botryoids or spherulites. Dolomite occurs in those modern samples which appear to constitute exhumed remnants of a former subsurface 'seep plumbing system', and so are strictly not true seabed 'seep-carbonates', but instead are part of the larger hydrocarbon seep province. Calcite in the ancient samples is either a product of alteration and neomorphic transformation of aragonite, or derives from late stage cementation from burial fluids. As a result of their formation processes, the calcites are generally recrystallised and have equant or 'cellular' textures. Stable δ13C and δ18O isotope cross-plots reveal a large spread of values for the sample groups. Ancient samples range from δ13C -8 to -50 PDB and δ18O -5.5 to +2 PDB. Modern samples have δ13C values from -6 to -41 PDB and δ18O values ranging from +2.6 to +6.7 PDB. The δ13C values suggest the majority of the methane that formed these seep-carbonates is of thermogenic origin, although some mixing from other carbon sources may have occurred. The positive δ18O signatures are suggestive of carbonate formation during dissociation of gas hydrates, while the negative values possibly indicate that some of the formation fluids were warmer than normal in the 17 - 30 C range.
7

Fluid venting structures of terrestrial mud volcanoes (Italy) and marine cold seeps (Black Sea) -Organo-geochemical and biological approaches / Fluid-ausstoßende Strukturen der terrestrischen Schlammvulkane (Italien) und der marinen Cold Seeps (Schwarzes Meer) -Organo-geochemische und biologische Ansätze

Heller, Christina 28 October 2011 (has links)
No description available.
8

Influence des communautés microbiennes sédimentaires sur la répartition faunistique dans les sites hydrothermaux et les zones d'émissions de fluides froids du bassin de Guaymas / Influence of sedimentary microbial communities on the faunistic distribution in hydrothermal sites and the cold seeps emission zones of the Guaymas Basin

Cruaud, Perrine 01 April 2014 (has links)
Au niveau des fonds océaniques, souvent considérés comme des déserts aux conditions de vie extrêmes, des oasis luxuriants de vie existent pourtant. Les sources hydrothermales et les suintements froids, principalement localisés au niveau des dorsales océaniques et des marges continentales, vont permettre le développement de communautés microbiennes et animales très particulières. Le Bassin de Guaymas, situé dans le Golfe de Californie (Mexique) présente la particularité de regrouper à la fois une zone de sources hydrothermales et une zone de suintements froids, situées à une soixantaine de kilomètres l’une de l’autre, et toutes deux recouvertes par une épaisse couche sédimentaire. Ces deux zones sont également colonisées par des étendues de bivalves, des buissons de vers tubicoles ainsi que de tapis microbiens blancs ou colorés comparables. Afin de mieux comprendre le fonctionnement global de ces deux types d’écosystèmes et notamment le rôle structurant des communautés microbiennes sédimentaires sur la répartition des différents assemblages de surface, les travaux entrepris dans cette thèse se proposaient d’étudier les communautés microbiennes sédimentaires associés à la zone de suintements froids (Marge de Sonora) et la zone de sources hydrothermales (Southern Trough) du Bassin de Guaymas. Pour cela, la diversité des communautés microbiennes (Bacteria et Archaea) de différents habitats caractérisés par une faune et des profils géochimiques particuliers, a été étudiée grâce à l’utilisation d’une technique de séquençage haut-débit, le pyroséquençage par la technique du 454, combinée à d’autres techniques comme le FISH ou la PCR quantitative. Cette étude a permis de déterminer que la structure et la diversité des communautés microbiennes dans ces sédiments étaient très spécifiques de ces environnements. Par ailleurs, les colonisateurs présents en surface des sédiments reflétaient des profils géochimiques et des communautés microbiennes très différentes au sein des sédiments. Dans les sédiments colonisés par les tapis microbiens, riches en méthane, les communautés microbiennes dominantes (ANME, Deltaproteobacteria…) utiliseraient notamment les émissions de méthane des couches sédimentaires profondes et produiraient d'importantes concentrations de sulfures, nécessaires à l’installation des communautés microbiennes thiotrophes de surface formant les tapis. Ces fortes concentrations en sulfure excluraient en revanche les communautés animales de ce périmètre. A contrario, dans les sédiments présentant de faibles concentrations en méthane et en sulfure, permettant l'installation d’assemblages faunistiques variés, les communautés microbiennes méthanotrophes anaérobies et productrices de sulfure étaient minoritaires. L'activité et le métabolisme de ces colonisateurs de surface pourraient par ailleurs permettre le développement des lignées microbiennes détectées dans ces habitats (MBG-D, Chloroflexi…). L'analyse des larges jeux de données obtenus au cours de cette étude nous a donc permis de mettre en évidence un système dynamique complexe fonctionnant en équilibre entre les communautés microbiennes sédimentaires, les organismes colonisant la surface du sédiment et la composition géochimique des eaux interstitielles. / Whereas the deep-sea environment is often considered to be a desert, hydrothermal vents andcold seeps provide “oases” of biological activity on the ocean floor. Vent and seep ecosystems support complex food webs based on microbial chemoautotrophic primary production. These hydrothermal vent and cold seeps ecosystems both release hydrocarbon- and sulfide-rich fluids,fueling various surface assemblages such as mat-forming giant bacteria or symbiont-bearinginvertebrates (e.g. bivalves, tubeworms). In the Guaymas Basin, the nearby presence at a few tens of kilometers of cold seeps and hydrothermal vents coupled with comparable sedimentary settings and depths offer a unique opportunity to assess and compare the microbial community composition of these ecosystems. Tobetter understand their overall functioning, we studied sedimentary microbial communities associated with cold seep and hydrothermal vent areas in the Guaymas Basin. The diversity of microbial communities inhabiting sediments was studied using high throughput sequencing (454pyrosequencing), combined with complementary approaches, such as FISH and quantitative PCR. This study reveals that sediments found in the Guaymas Basin were colonized by microbial communities typically found in these types of ecosystems. Our results revealed a high similarity between microbial communities composition associated with the cold seep and hydrothermal vent areas as a probable consequence of the sedimentary context. Nonetheless, thermophilic and hyperthermophilic lineages (e.g.: Thermodesulfobacteria, Desulfurococcales, etc) were exclusively identified in hydrothermally influenced sediments highlighting the strong influence of temperature gradients and other hydrothermally-related factors on microbial community composition. Furthermore, sediments populated by different surface assemblages show distinct porewater geochemistry features and are associated with distinct microbial communities. Indeed, in the sediments underlying microbial mats characterized by high methane porewater concentrations,microbial communities were dominated by anaerobic methane oxidizers (ANME), known to produce sulfide which provides high fluxes of sulfide to the seafloor. In contrast, sediment associated microbial communities underlying faunal assemblages were characterized by a lower biomass and lower methane porewater concentrations in sediments, limiting porewater sulfide concentrations. Without elevated and toxic sulfide concentrations, faunal assemblages can colonize the surface. Together, geochemical and microbial surveys indicate that porewater methane concentrations play an important role in the microbial community structure and subsequently in the establishment of the surface colonizers. Furthermore, presence and activity of the surface colonizers influence the underlying microbial communities probably because of modification of energy source availabilities. Finally, the existence of similar microbial populations between the two ecosystems also raises the question of their dispersal mechanisms. Our results support the hypothesis of a potential continuity among deep-sea ecosystems. In absence of physical borders, environmental conditions (temperature, specific compounds associated withhydrothermal fluids) might select specific and highly adapted microorganisms from the pool of microorganisms dispersed globally across the seafloor.
9

Diversité phylogénétique et fonctionnelle des communautés microbiennes incultivées des sédiments marins de la marge de Sonora, Bassin de Guaymas (Golfe de Californie) / Phylogenic and functional diversity of uncultured microbial communities from the Sonora Margin cold seep sediments, Guaymas Basin (Gulf of California)

Vigneron, Adrien 12 December 2012 (has links)
Au niveau des marges continentales, et plus particulièrement dans des zones dites d'émissions de fluides froids, des communautés microbiennes et animales complexes se développent localement à la surface des sédiments. Ces communautés utilisent pour leur croissance des composés chimiques réduits (H2S, Méthane, CO2 ...), contenus dans un fluide à basse température, percolant à travers les sédiments et issus de phénomènes géologiques et de divers processus microbiens. Afin d'étudier la diversité des communautés microbiennes associées à ces écosystèmes ainsi que leur rôle dans l'environnement, et d'appréhender les paramètres environnementaux influençant la distribution et l'écophysiologie de ces communautés, des sédiments de surface (0-20 cm) mais également plus profonds (<9 mbsf) ont été prélevés au niveau de la Marge de Sonora. Les communautés microbiennes présentes ont été étudiées par diverses approches de biologie moléculaire, de mise en culture et de microscopie. Ce travail de recherche a permis : i) de déterminer la structure et la diversité des communautés microbiennes métaboliquement actives dans ces sédiments, ii) de mettre en évidence des écophysiologies différentes entre les acteurs du cycle du méthane (méthanogènes, ANMEs, SRB), prépondérant dans cet écosystème et iii) de découvrir la présence de nouvelles lignées et fonctions microbiennes dans les sédiments de zones d'émission de fluides froids des marges continentales. / At continental margins, and more particularly in cold seep areas, microbial and animal communities were locally detected at the surface of the sediments. These communities grow using reduced chemical compounds (H2S, Methane, COZ ...) contained in the percolated cold fluids and produced by both geological and microbial processes. ln order to study microbial community diversity in these ecosystems and their role in the environment as well as to understand the environmental factors influencing the distribution and ecophysiology of these communities, surface (0-20 cmbsf) but also deeper (<9 mbsf) sediments were collected at the Sonora Margin. Microbial communities have been studied using various molecular, cultural and microscopy approaches. This research allowed: i) to determine the structure and diversity of metabolically active microbial communities in sediments, ii) to highlight different ecophysiologies for methane cycling microorganisms (methanogens, ANME, SRB) and iii) to discover the presence of new microbial lineages and functions in the cold seeps sediments of the continental margins.

Page generated in 0.0368 seconds