• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic Design Of Cold Formed Steel Structures In Residential Applications

Uygar, Celaletdin 01 May 2006 (has links) (PDF)
iv ABSTRACT SEISMIC DESIGN OF COLD FORMED STEEL STRUCTURES IN RESIDENTIAL APPLICATIONS Uygar, Celaletdin M.Sc., Department of Civil Engineering Supervisor: Prof. Dr. &Ccedil / etin Yilmaz May 2005, 82 pages In this study, lateral load bearing capacities of cold formed steel framed wall panels are investigated. For this purpose lateral load bearing alternatives are analyzed numerically by computer models and results are compared with already done experimental studies and approved codes. In residential cold formed steel construction, walls are generally covered with cladding material like oriented strand board (OSB) or plywood on the exterior wall surface and these sheathed light gauge steel walls behave as shear walls with significant capacity. Oriented strand board is used in analytical models since OSB claddings are most commonly used in residential applications. The strength of shear walls depends on different parameters like screw spacing, strength of sheathing, size of fasteners used and aspect ratio. SAP2000 software is used for structural analysis of walls and joint force outputs are collected by Microsoft Excel. The yield strength of shear walls at which first screw connection reaches its shear capacity is calculated and load carrying capacity per meter length is found. The nonlinear analysis is also done by modeling the screw connections between OSB and frame as non-linear link and the nominal shear capacities of walls are calculated for different screw spacing combinations. The results are consistent with the values in shear wall design Guide and International Building Code 2003. The other lateral load bearing method is flat strap X-bracing on wall surfaces. Various parameters like wall frame section thickness, flat strap area, aspect ratio and bracing number are investigated and results are evaluated. The shear walls in which X-bracing and OSB sheathing used together are also analyzed and the results are compared with separate analyses.
2

Seismic Performance Evaluation of Novel Cold-Formed Steel Framed Shear Walls Sheathed with Corrugated Steel Sheets

Lan, Xing (Civil engineer) 08 1900 (has links)
This thesis presents experiments and numerical analysis of a novel cold-formed steel framed shear wall sheathed with corrugated steel sheets. The objective of this newly designed shear wall is to meet the growing demand of mid-rise buildings and the combustibility requirement in the International Building Code. The strength of the novel shear wall is higher than currently code certified shear wall in AISI S400-15 so that it could be more favorable for mid-rise building in areas that are prone to earthquakes and hurricanes. Full-scale monotonic and cyclic tests were conducted on bearing walls and shear walls under combined lateral and gravity loads. Though the gravity loads had negative effects on the strength and stiffness of the shear wall due to the buckling of the chord framing members, it still shows promise to be used in mid-rise buildings. The objective of numerical analysis is to quantify the seismic performance factors of the newly design shear wall lateral-force resisting system by using the recommended methodology in FEMA P695. Two groups of building archetypes, story varied from two to five, were simulated in OpenSees program. Nonlinear static and dynamic analysis were performed in both horizontal directions of each building archetype. Finally, the results of the performance evaluation verified the seismic performance factors(R=Cd=6.5 and Ω =3.0) were appropriate for the novel shear wall system.

Page generated in 0.0501 seconds