• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise bayesiana de dados espaciais explorando diferentes estruturas de variância

Rampaso, Renato Couto [UNESP] 11 August 2014 (has links) (PDF)
Made available in DSpace on 2015-03-03T11:52:52Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-08-11Bitstream added on 2015-03-03T12:06:57Z : No. of bitstreams: 1 000807000.pdf: 3826800 bytes, checksum: 8f498fe53474850bd7d37809b06976e2 (MD5) / No mapeamento de doenças, o objetivo geral é estudar a incidência ou risco de mortalidade causado por uma determinada doença em um conjunto de regiões geográficas. É comum assumir que a variável resposta, geralmente uma contagem, segue uma distribuição de Poisson, cuja taxa média pode ser explicada por um grupo de covariáveis e um efeito aleatório. Para este efeito aleatório, considera-se modelos autorregressivos condicionais (CAR) que carregam informação sobre a relação de vizinhança entre as regiões. Tais relações de vizinhança são expressas por meio da matriz de variâncias presente nestes modelos. Cada modelo CAR possui características distintas que atendem a diferentes propósitos a serem considerados pelo pesquisador. O foco do trabalho foi o estudo e comparação de alguns modelos autorregressivos condicionais propostos na literatura. Para a melhor compreensão das características de cada modelo, duas aplicações com dados epidemiológicos foram conduzidas para modelar o risco de óbito por Doença de Crohn e Colite Ulcerativa e por Câncer de traqueia, brônquios e pulmões no Estado de São Paulo, no período de 2008 a 2012... / In disease mapping, the overall goal is to study the incidence or risk of mortality caused by a specific disease in a number of geographical regions. It is common to assume that the response variable, generally a count, follows a Poisson distribution, whose average rate can be explained by a group of covariates and a random effect. For this random effect, it is considered conditional autoregressive models (CAR), which carry information about the neighborhood relationship between the regions. Such neighborhood relations are expressed by the variance matrix present in the models. Each CAR model has distinct characteristics that serve different purposes to be considered by the researcher. The focus of this dissertation was the study and comparison of some conditional autoregressive models proposed in the literature. For better understanding of the characteristics of each model, two applications with epidemiological data were conducted to model the risk of death due to Crohn’s Disease and Ulcerative Colitis, and due to trachea, bronchus and lung cancer in the State of São Paulo, in the period of 2008-2012...
2

Análise bayesiana de dados espaciais explorando diferentes estruturas de variância /

Rampaso, Renato Couto. January 2014 (has links)
Orientador: Aparecida Doniseti Pires de Souza / Coorientador: Edilson Ferreira Flores / Banca: Vilma Mayumi Tachibana / Banca: Ricardo Sandes Ehlers / Resumo: No mapeamento de doenças, o objetivo geral é estudar a incidência ou risco de mortalidade causado por uma determinada doença em um conjunto de regiões geográficas. É comum assumir que a variável resposta, geralmente uma contagem, segue uma distribuição de Poisson, cuja taxa média pode ser explicada por um grupo de covariáveis e um efeito aleatório. Para este efeito aleatório, considera-se modelos autorregressivos condicionais (CAR) que carregam informação sobre a relação de vizinhança entre as regiões. Tais relações de vizinhança são expressas por meio da matriz de variâncias presente nestes modelos. Cada modelo CAR possui características distintas que atendem a diferentes propósitos a serem considerados pelo pesquisador. O foco do trabalho foi o estudo e comparação de alguns modelos autorregressivos condicionais propostos na literatura. Para a melhor compreensão das características de cada modelo, duas aplicações com dados epidemiológicos foram conduzidas para modelar o risco de óbito por Doença de Crohn e Colite Ulcerativa e por Câncer de traqueia, brônquios e pulmões no Estado de São Paulo, no período de 2008 a 2012... / Abstract: In disease mapping, the overall goal is to study the incidence or risk of mortality caused by a specific disease in a number of geographical regions. It is common to assume that the response variable, generally a count, follows a Poisson distribution, whose average rate can be explained by a group of covariates and a random effect. For this random effect, it is considered conditional autoregressive models (CAR), which carry information about the neighborhood relationship between the regions. Such neighborhood relations are expressed by the variance matrix present in the models. Each CAR model has distinct characteristics that serve different purposes to be considered by the researcher. The focus of this dissertation was the study and comparison of some conditional autoregressive models proposed in the literature. For better understanding of the characteristics of each model, two applications with epidemiological data were conducted to model the risk of death due to Crohn's Disease and Ulcerative Colitis, and due to trachea, bronchus and lung cancer in the State of São Paulo, in the period of 2008-2012... / Mestre

Page generated in 0.1493 seconds