• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 20
  • 9
  • 8
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 99
  • 95
  • 65
  • 50
  • 48
  • 40
  • 37
  • 37
  • 36
  • 36
  • 35
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Hybrid Movie Recommender Using Dynamic Fuzzy Clustering

Gurcan, Fatih 01 March 2010 (has links) (PDF)
Recommender systems are information retrieval tools helping users in their information seeking tasks and guiding them in a large space of possible options. Many hybrid recommender systems are proposed so far to overcome shortcomings born of pure content-based (PCB) and pure collaborative filtering (PCF) systems. Most studies on recommender systems aim to improve the accuracy and efficiency of predictions. In this thesis, we propose an online hybrid recommender strategy (CBCFdfc) based on content boosted collaborative filtering algorithm which aims to improve the prediction accuracy and efficiency. CBCFdfc combines content-based and collaborative characteristics to solve problems like sparsity, new item and over-specialization. CBCFdfc uses fuzzy clustering to keep a certain level of prediction accuracy while decreasing online prediction time. We compare CBCFdfc with PCB and PCF according to prediction accuracy metrics, and with CBCFonl (online CBCF without clustering) according to online recommendation time. Test results showed that CBCFdfc performs better than other approaches in most cases. We, also, evaluate the effect of user-specified parameters to the prediction accuracy and efficiency. According to test results, we determine optimal values for these parameters. In addition to experiments made on simulated data, we also perform a user study and evaluate opinions of users about recommended movies. The results that are obtained in user evaluation are satisfactory. As a result, the proposed system can be regarded as an accurate and efficient hybrid online movie recommender.
42

A Hybrid Recommendation System Capturing The Effect Of Time And Demographic Data

Oktay, Fulya 01 June 2010 (has links) (PDF)
The information that World Wide Web (WWW) provides have grown up very rapidly in recent years, which resulted in new approaches for people to reach the information they need. Although web pages and search engines are indeed strong enough for us to reach what we want, it is not an efficient solution to present data and wait people to reach it. Some more creative and beneficial methods had to be developed for decreasing the time to reach the information and increase the quality of the information. Recommendation systems are one of the ways for achieving this purpose. The idea is to design a system that understands the information user wants to obtain from user actions, and to find the information similar to that. Several studies have been done in this field in order to develop a recommendation system which is capable of recommending movies, books, web sites and similar items like that. All of them are based on two main principles, which are collaborative filtering and content based recommendations. Within this thesis work, a recommendation system approach which combines both content based (CB) and collaborative filtering (CF) approaches by capturing the effect of time like purchase time or release time. In addition to this temporal behavior, the influence of demographic information of user on purchasing habits is also examined this system which is called &ldquo / TDRS&rdquo / .
43

An Ontology-based Hybrid Recommendation System Using Semantic Similarity Measure And Feature Weighting

Ceylan, Ugur 01 September 2011 (has links) (PDF)
The task of the recommendation systems is to recommend items that are relevant to the preferences of users. Two main approaches in recommendation systems are collaborative filtering and content-based filtering. Collaborative filtering systems have some major problems such as sparsity, scalability, new item and new user problems. In this thesis, a hybrid recommendation system that is based on content-boosted collaborative filtering approach is proposed in order to overcome sparsity and new item problems of collaborative filtering. The content-based part of the proposed approach exploits semantic similarities between items based on a priori defined ontology-based metadata in movie domain and derived feature-weights from content-based user models. Using the semantic similarities between items and collaborative-based user models, recommendations are generated. The results of the evaluation phase show that the proposed approach improves the quality of recommendations.
44

Item-level Trust-based Collaborative Filtering Approach to Recommender Systems

Lu, Chia-Ju 23 July 2008 (has links)
With the rapid growth of Internet, more and more information is disseminated in the World Wide Web. It is therefore not an easy task to acquire desired information from the Web environment due to the information overload problem. To overcome this difficulty, two major methods, information retrieval and information filtering, arise. Recommender systems that employ information filtering techniques also emerge when the users¡¦ requirements are too vague in mind to express explicitly as keywords. Collaborative filtering (CF) refers to compare novel information with common interests shared by a group of people for recommendation purpose. But CF has major problem: sparsity. This problem refers to the situation that the coverage of ratings appears very sparse. With few data available, the user similarity employed in CF becomes unstable and thus unreliable in the recommendation process. Recently, several collaborative filtering variations arise to tackle the sparsity problem. One of them refers to the item-based CF as opposed to the traditional user-based CF. This approach focuses on the correlations of items based on users¡¦ co-rating. Another popular variation is the trust-based CF. In such an approach, a second component, trust, is taken into account and employed in the recommendation process. The objective of this research is thus to propose a hybrid approach that takes both advantages into account for better performance. We propose the item-level trust-based collaborative filtering (ITBCF) approach to alleviate the sparsity problem. We observe that ITBCF outperforms TBCF in every situation we consider. It therefore confirms our conjecture that the item-level trusts that consider neighbors can stabilize derived trust values, and thus improve the performance.
45

On Recommending Tourist Attractions in a Mobile P2P Environment

Weng, Ling-chao 11 August 2009 (has links)
¡@¡@Recommendation techniques are developed to uncover users¡¥ real needs among large volume of information. Recommender systems help us filter information and present those similar to our tastes. As wireless technology develops and mobile devices become more and more powerful, new recommender systems appear to adapt to new implementation environment. We focus on travel recommender systems implemented in a mobile P2P environment using collaborative filtering recommendation algorithms which intend to provide real-time suggestions to travelers when they are on the move. Using the concept of incorporating other travelers¡¥ suggestions to the next attraction, we let users exchange their ratings toward visited attractions and use these ratings as a basis of recommendation. ¡@¡@We proposed six data exchange algorithms for travelers to exchange their ratings. The proposed methods were experimented in the homogeneous and heterogeneous environment. The experimental results show that the proposed data exchange methods have better recommendation hit ratio than content-based recommendation methods and better performance compared with other methods only using ratings of users when they meet face-to-face. Finally, all methods are compared and evaluated. An optimal method should be able to strike a balance between algorithm performance and the amount of data communication.
46

A data-driven approach for personalized drama management

Yu, Hong 21 September 2015 (has links)
An interactive narrative is a form of digital entertainment in which players can create or influence a dramatic storyline through actions, typically by assuming the role of a character in a fictional virtual world. The interactive narrative systems usually employ a drama manager (DM), an omniscient background agent that monitors the fictional world and determines what will happen next in the players' story experience. Prevailing approaches to drama management choose successive story plot points based on a set of criteria given by the game designers. In other words, the DM is a surrogate for the game designers. In this dissertation, I create a data-driven personalized drama manager that takes into consideration players' preferences. The personalized drama manager is capable of (1) modeling the players' preference over successive plot points from the players' feedback; (2) guiding the players towards selected plot points without sacrificing players' agency; (3) choosing target successive plot points that simultaneously increase the player's story preference ratings and the probability of the players selecting the plot points. To address the first problem, I develop a collaborative filtering algorithm that takes into account the specific sequence (or history) of experienced plot points when modeling players' preferences for future plot points. Unlike the traditional collaborative filtering algorithms that make one-shot recommendations of complete story artifacts (e.g., books, movies), the collaborative filtering algorithm I develop is a sequential recommendation algorithm that makes every successive recommendation based on all previous recommendations. To address the second problem, I create a multi-option branching story graph that allows multiple options to point to each plot point. The personalized DM working in the multi-option branching story graph can influence the players to make choices that coincide with the trajectories selected by the DM, while gives the players the full agency to make any selection that leads to any plot point in their own judgement. To address the third problem, the personalized DM models the probability that the players transitioning to each full-length stories and selects target stories that achieve the highest expected preference ratings at every branching point in the story space. The personalized DM is implemented in an interactive narrative system built with choose-your-own-adventure stories. Human study results show that the personalized DM can achieve significantly higher preference ratings than non-personalized DMs or DMs with pre-defined player types, while preserve the players' sense of agency.
47

Data Privacy Preservation in Collaborative Filtering Based Recommender Systems

Wang, Xiwei 01 January 2015 (has links)
This dissertation studies data privacy preservation in collaborative filtering based recommender systems and proposes several collaborative filtering models that aim at preserving user privacy from different perspectives. The empirical study on multiple classical recommendation algorithms presents the basic idea of the models and explores their performance on real world datasets. The algorithms that are investigated in this study include a popularity based model, an item similarity based model, a singular value decomposition based model, and a bipartite graph model. Top-N recommendations are evaluated to examine the prediction accuracy. It is apparent that with more customers' preference data, recommender systems can better profile customers' shopping patterns which in turn produces product recommendations with higher accuracy. The precautions should be taken to address the privacy issues that arise during data sharing between two vendors. Study shows that matrix factorization techniques are ideal choices for data privacy preservation by their nature. In this dissertation, singular value decomposition (SVD) and nonnegative matrix factorization (NMF) are adopted as the fundamental techniques for collaborative filtering to make privacy-preserving recommendations. The proposed SVD based model utilizes missing value imputation, randomization technique, and the truncated SVD to perturb the raw rating data. The NMF based models, namely iAux-NMF and iCluster-NMF, take into account the auxiliary information of users and items to help missing value imputation and privacy preservation. Additionally, these models support efficient incremental data update as well. A good number of online vendors allow people to leave their feedback on products. It is considered as users' public preferences. However, due to the connections between users' public and private preferences, if a recommender system fails to distinguish real customers from attackers, the private preferences of real customers can be exposed. This dissertation addresses an attack model in which an attacker holds real customers' partial ratings and tries to obtain their private preferences by cheating recommender systems. To resolve this problem, trustworthiness information is incorporated into NMF based collaborative filtering techniques to detect the attackers and make reasonably different recommendations to the normal users and the attackers. By doing so, users' private preferences can be effectively protected.
48

Scalable Collaborative Filtering Recommendation Algorithms on Apache Spark

Casey, Walker Evan 01 January 2014 (has links)
Collaborative filtering based recommender systems use information about a user's preferences to make personalized predictions about content, such as topics, people, or products, that they might find relevant. As the volume of accessible information and active users on the Internet continues to grow, it becomes increasingly difficult to compute recommendations quickly and accurately over a large dataset. In this study, we will introduce an algorithmic framework built on top of Apache Spark for parallel computation of the neighborhood-based collaborative filtering problem, which allows the algorithm to scale linearly with a growing number of users. We also investigate several different variants of this technique including user and item-based recommendation approaches, correlation and vector-based similarity calculations, and selective down-sampling of user interactions. Finally, we provide an experimental comparison of these techniques on the MovieLens dataset consisting of 10 million movie ratings.
49

Extending low-rank matrix factorizations for emerging applications

Zhou, Ke 13 January 2014 (has links)
Low-rank matrix factorizations have become increasingly popular to project high dimensional data into latent spaces with small dimensions in order to obtain better understandings of the data and thus more accurate predictions. In particular, they have been widely applied to important applications such as collaborative filtering and social network analysis. In this thesis, I investigate the applications and extensions of the ideas of the low-rank matrix factorization to solve several practically important problems arise from collaborative filtering and social network analysis. A key challenge in recommendation system research is how to effectively profile new users, a problem generally known as \emph{cold-start} recommendation. In the first part of this work, we extend the low-rank matrix factorization by allowing the latent factors to have more complex structures --- decision trees to solve the problem of cold-start recommendations. In particular, we present \emph{functional matrix factorization} (fMF), a novel cold-start recommendation method that solves the problem of adaptive interview construction based on low-rank matrix factorizations. The second part of this work considers the efficiency problem of making recommendations in the context of large user and item spaces. Specifically, we address the problem through learning binary codes for collaborative filtering, which can be viewed as restricting the latent factors in low-rank matrix factorizations to be binary vectors that represent the binary codes for both users and items. In the third part of this work, we investigate the applications of low-rank matrix factorizations in the context of social network analysis. Specifically, we propose a convex optimization approach to discover the hidden network of social influence with low-rank and sparse structure by modeling the recurrent events at different individuals as multi-dimensional Hawkes processes, emphasizing the mutual-excitation nature of the dynamics of event occurrences. The proposed framework combines the estimation of mutually exciting process and the low-rank matrix factorization in a principled manner. In the fourth part of this work, we estimate the triggering kernels for the Hawkes process. In particular, we focus on estimating the triggering kernels from an infinite dimensional functional space with the Euler Lagrange equation, which can be viewed as applying the idea of low-rank factorizations in the functional space.
50

Information enrichment for quality recommender systems

Weng, Li-Tung January 2008 (has links)
The explosive growth of the World-Wide-Web and the emergence of ecommerce are the major two factors that have led to the development of recommender systems (Resnick and Varian, 1997). The main task of recommender systems is to learn from users and recommend items (e.g. information, products or books) that match the users’ personal preferences. Recommender systems have been an active research area for more than a decade. Many different techniques and systems with distinct strengths have been developed to generate better quality recommendations. One of the main factors that affect recommenders’ recommendation quality is the amount of information resources that are available to the recommenders. The main feature of the recommender systems is their ability to make personalised recommendations for different individuals. However, for many ecommerce sites, it is difficult for them to obtain sufficient knowledge about their users. Hence, the recommendations they provided to their users are often poor and not personalised. This information insufficiency problem is commonly referred to as the cold-start problem. Most existing research on recommender systems focus on developing techniques to better utilise the available information resources to achieve better recommendation quality. However, while the amount of available data and information remains insufficient, these techniques can only provide limited improvements to the overall recommendation quality. In this thesis, a novel and intuitive approach towards improving recommendation quality and alleviating the cold-start problem is attempted. This approach is enriching the information resources. It can be easily observed that when there is sufficient information and knowledge base to support recommendation making, even the simplest recommender systems can outperform the sophisticated ones with limited information resources. Two possible strategies are suggested in this thesis to achieve the proposed information enrichment for recommenders: • The first strategy suggests that information resources can be enriched by considering other information or data facets. Specifically, a taxonomy-based recommender, Hybrid Taxonomy Recommender (HTR), is presented in this thesis. HTR exploits the relationship between users’ taxonomic preferences and item preferences from the combination of the widely available product taxonomic information and the existing user rating data, and it then utilises this taxonomic preference to item preference relation to generate high quality recommendations. • The second strategy suggests that information resources can be enriched simply by obtaining information resources from other parties. In this thesis, a distributed recommender framework, Ecommerce-oriented Distributed Recommender System (EDRS), is proposed. The proposed EDRS allows multiple recommenders from different parties (i.e. organisations or ecommerce sites) to share recommendations and information resources with each other in order to improve their recommendation quality. Based on the results obtained from the experiments conducted in this thesis, the proposed systems and techniques have achieved great improvement in both making quality recommendations and alleviating the cold-start problem.

Page generated in 0.1264 seconds