• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 595
  • 584
  • 72
  • 69
  • 30
  • 25
  • 20
  • 17
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1630
  • 529
  • 194
  • 184
  • 183
  • 148
  • 134
  • 132
  • 129
  • 122
  • 120
  • 91
  • 86
  • 86
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Cardiac Tissue Engineering

Dawson, Jennifer Elizabeth 24 June 2011 (has links)
The limited treatment options available for heart disease patients has lead to increased interest in the development of embryonic stem cell (ESC) therapies to replace heart muscle. The challenges of developing usable ESC therapeutic strategies are associated with the limited ability to obtain a pure, defined population of differentiated cardiomyocytes, and the design of in vivo cell delivery platforms to minimize cardiomyocyte loss. These challenges were addressed in Chapter 2 by designing a cardiomyocyte selectable progenitor cell line that permitted evaluation of a collagen-based scaffold for its ability to sustain stem cell-derived cardiomyocyte function (“A P19 Cardiac Cell Line as a Model for Evaluating Cardiac Tissue Engineering Biomaterials”). P19 cells enriched for cardiomyocytes were viable on a transglutaminase cross-linked collagen scaffold, and maintained their cardiomyocyte contractile phenotype in vitro while growing on the scaffold. The potential for a novel cell-surface marker to purify cardiomyocytes within ESC cultures was evaluated in Chapter 3, “Dihydropyridine Receptor (DHP-R) Surface Marker Enrichment of ES-derived Cardiomyocytes”. DHP-R is demonstrated to be upregulated at the protein and RNA transcript level during cardiomyogenesis. DHP-R positive mouse ES cells were fluorescent activated cell sorted, and the DHP-R positive cultured cells were enriched for cardiomyocytes compared to the DHP-R negative population. Finally, in Chapter 4, mouse ESCs were characterized while growing on a clinically approved collagen I/III-based scaffold modified with the RGD integrin-binding motif, (“Collagen (+RGD and –RGD) scaffolds support cardiomyogenesis after aggregation of mouse embryonic stem cells”). The collagen I/III RGD+ and RGD- scaffolds sustained ESC-derived cardiomyocyte growth and function. Notably, no significant differences in cell survival, cardiac phenotype, and cardiomyocyte function were detected with the addition of the RGD domain to the collagen scaffold. Thus, in summary, these three studies have resulted in the identification of a potential cell surface marker for ESC-derived cardiomyocyte purification, and prove that collagen-based scaffolds can sustain ES-cardiomyocyte growth and function. This has set the framework for further studies that will move the field closer to obtaining a safe and effective delivery strategy for transplanting ESCs onto human hearts.
202

The Consequences of Collagen Degradation on Bone Mechanical Properties

Wynnyckyj, Chrystia 23 February 2011 (has links)
The mechanisms underlying the effect of alterations in Type I collagen on bone mechanical properties are not well defined. Clinical tools for evaluating fracture risk, such as dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS) focus on bone mineral and cannot detect changes in the collagen matrix. The mechanical response tissue analyzer (MRTA) is a potential tool for evaluating fracture risk. Thus, the focus of this work was to investigate the effects of collagen degradation on bone mechanical properties and examine whether clinical tools can detect these changes. Female and male emu tibiae were endocortically treated with 1 M potassium hydroxide (KOH) solution for 1-14 days and then either mechanically tested in three-point bending, fatigued to failure or fatigued to induce stiffness loss. Computed Tomography scans, DXA, QUS, MRTA and three-point bend testing in the elastic region were performed on emu tibiae before and after either KOH treatment or fatigue to induce stiffness loss. Fracture surfaces were examined to determine failure mechanisms. Bone mineral and bone collagen were characterized using appropriate techniques. Bone mineral-collagen interface was investigated using Raman spectroscopy and atomic force microscopy (AFM). Endocortical KOH treatment does not affect bone mineral however, it causes in situ collagen degradation, rather than removal and may be weakening the mineral-collagen interface. These changes result in significantly compromised mechanical properties. Emu tibiae show significant decreases in failure stress and increased failure strain and toughness, with increasing KOH treatment time. The significant increase in toughness of KOH treated bones is due to structural alterations that enhance the ability of the microstructure to dissipate energy during the failure process, thereby slowing crack propagation, as shown by fracture surface analysis. KOH treated samples exhibit a lower fatigue resistance compared to untreated samples at high stresses only for both sexes. Partial fatigue testing results in similar decreases in modulus for all groups and sexes. The MRTA detected these changes whereas DXA and QUS did not. MRTA detects changes in bone mechanical properties induced by changes in collagen quality and fatigue and could be a more effective tool for predicting fracture risk.
203

In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen gels

Hui, Ting-yan. January 2007 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Also available in print.
204

Platelets and eosinophils in lung tissue remodelling /

Zagai, Ulrika, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
205

Human ovulation : studies on collagens, gelatinases and tissue inhibitors of metalloproteinases /

Lind, Anna Karin, January 2006 (has links)
Diss. (sammanfattning) Göteborg : Göteborgs universitet, 2006. / Härtill 4 uppsatser.
206

Characterization of actin filament organization in muscle cells of C. elegans collagen IV mutants /

Doucouré́, Hinda, January 1900 (has links)
Thesis (M.S.)--Missouri State University, 2008. / "May 2008." Includes bibliographical references (leaves 49-52). Also available online.
207

Mouse model with impaired matrix degradation at the chondro-osseous junction

Chan, Wing-yu, Tori. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 182-200) Also available in print.
208

Developing culture conditions to study keratocyte phenotypes in vitro /

Musselmann, Kurt. January 2006 (has links)
Dissertation (Ph.D.)--University of South Florida, 2006. / Includes vita. Includes bibliographical references (leaves 156-180). Also available online.
209

Collagen gene expression in embryonic stem cells and in mouse development /

Lau Yim, Tak-kwong, Elizabeth. January 1991 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1992.
210

Application and development of NMR spectroscopy to study the conformation and dynamics of collagen-like triple helical peptides

Li, Yingjie. January 2007 (has links)
Thesis (Ph. D.)--Rutgers University, 2007. / "Graduate Program in Biochemistry." Includes bibliographical references (p. 164-176).

Page generated in 0.06 seconds