• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Géométrie à l'infini de certaines variétés riemanniennes non-compactes / Geometry at infinity of some noncompact Riemannian manifolds

Deruelle, Alix 23 November 2012 (has links)
On s'intéresse à la géométrie globale et asymptotique de certaines variétés riemanniennes non compactes. Dans une première partie, on étudie la topologie et la géométrie à l'infini des variétés riemanniennes à courbure (de Ricci) positive ayant un rapport asymptotique de courbure fini. On caractérise le cas non effondré via la notion de cône asymptotique et on donne des conditions suffisantes sur le groupe fondamental pour garantir un non effondrement. La seconde partie est dédiée à l'étude des solutions de Type III du flot de Ricci à courbure positive et aux solitons gradients de Ricci expansifs (points fixes de Type III) présentant une décroissance quadratique de la courbure. On montre l'existence et l'unicité des cônes asymptotiques de tels points fixes. On donne également des conditions suffisantes de nature algébrique et géométrique pour garantir une géométrie de révolution de tels solitons. Dans une troisième partie, on caractérise la géométrie des solitons gradients de Ricci stables à courbure positive et à croissance volumique linéaire. Puis, on s'intéresse au non effondrement des variétés riemanniennes de dimension trois à courbure de Ricci positive ayant un rapport asymptotique de courbure fini. / We study the global and asymptotic geometry of non-compact Riemannian manifolds. First, we study the topology and geometry at infinity of Riemannian manifolds with nonnegative (Ricci) curvature and finite asymptotic curvature ratio. We focus on the non-collapsed case with the help of asymptotic cones and we give sufficient conditions on the fundamental group to guarantee non-collapsing. The second part is dedicated to the study of (non-negatively curved) Type III Ricci flow solutions. We mainly analyze the asymptotic geometry of Type III self-similar solutions (expanding gradient Ricci soliton) with finite asymptotic curvature ratio. We prove the existence and uniqueness of their asymptotic cones. We also give algebraic and geometric sufficient conditions to guarantee rotational symmetry of such metrics. In the last part, we characterize the geometry of steady gradient Ricci solitons with nonnegative sectional curvature and linear volume growth. Finally, we study the non-collapsing of three dimensional Riemannian manifold with nonnegative Ricci curvature and finite asymptotic curvature ratio.

Page generated in 0.1093 seconds