Spelling suggestions: "subject:"noncompact manifold"" "subject:"oncompact manifold""
1 |
Géométrie à l'infini de certaines variétés riemanniennes non-compactes / Geometry at infinity of some noncompact Riemannian manifoldsDeruelle, Alix 23 November 2012 (has links)
On s'intéresse à la géométrie globale et asymptotique de certaines variétés riemanniennes non compactes. Dans une première partie, on étudie la topologie et la géométrie à l'infini des variétés riemanniennes à courbure (de Ricci) positive ayant un rapport asymptotique de courbure fini. On caractérise le cas non effondré via la notion de cône asymptotique et on donne des conditions suffisantes sur le groupe fondamental pour garantir un non effondrement. La seconde partie est dédiée à l'étude des solutions de Type III du flot de Ricci à courbure positive et aux solitons gradients de Ricci expansifs (points fixes de Type III) présentant une décroissance quadratique de la courbure. On montre l'existence et l'unicité des cônes asymptotiques de tels points fixes. On donne également des conditions suffisantes de nature algébrique et géométrique pour garantir une géométrie de révolution de tels solitons. Dans une troisième partie, on caractérise la géométrie des solitons gradients de Ricci stables à courbure positive et à croissance volumique linéaire. Puis, on s'intéresse au non effondrement des variétés riemanniennes de dimension trois à courbure de Ricci positive ayant un rapport asymptotique de courbure fini. / We study the global and asymptotic geometry of non-compact Riemannian manifolds. First, we study the topology and geometry at infinity of Riemannian manifolds with nonnegative (Ricci) curvature and finite asymptotic curvature ratio. We focus on the non-collapsed case with the help of asymptotic cones and we give sufficient conditions on the fundamental group to guarantee non-collapsing. The second part is dedicated to the study of (non-negatively curved) Type III Ricci flow solutions. We mainly analyze the asymptotic geometry of Type III self-similar solutions (expanding gradient Ricci soliton) with finite asymptotic curvature ratio. We prove the existence and uniqueness of their asymptotic cones. We also give algebraic and geometric sufficient conditions to guarantee rotational symmetry of such metrics. In the last part, we characterize the geometry of steady gradient Ricci solitons with nonnegative sectional curvature and linear volume growth. Finally, we study the non-collapsing of three dimensional Riemannian manifold with nonnegative Ricci curvature and finite asymptotic curvature ratio.
|
2 |
A rigidez da curvatura de Ricci do hemisfério Sⁿ+ / Rici curvature rigidity of the hemisphere Sⁿ+Jesus, Ana Maria Menezes de 04 December 2009 (has links)
In this work we demonstrate a theorem obtained by F. Hang and X. Wang, which ensures that a compact Riemannian manifold (Mn,g) with nonempty boundary, Ricci curvature greater or equal to (n-1)g, boundary isometric to the (n-1)-dimensional sphere and second fundamental form nonnegative, is isometric to the hemisphere . That result was published in this year in Journal of Geometric Analysis with the title Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação apresentamos a demonstração de um teorema obtido por F. Hang e X. Wang, o qual estabelece que uma variedade (Mn,g) Riemanniana compacta com bordo não-vazio, curvatura de Ricci maior ou igual a (n-1)g, e com bordo isométrico à esfera (n-1)-dimensional e segunda forma fundamental não-negativa, é isométrica ao hemisfério . Este artigo foi publicado em 2009 no Journal of Geometric Analysis, com o título Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature.
|
Page generated in 0.0623 seconds