• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 25
  • 11
  • 11
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 271
  • 158
  • 154
  • 147
  • 88
  • 61
  • 50
  • 46
  • 44
  • 41
  • 40
  • 40
  • 40
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Probing supergravity unified theories at the Large Hadron Collider a dissertation /

Lin, Zuowei. January 1900 (has links)
Thesis (Ph. D.)--Northeastern University, 2008. / Title from title page (viewed March 9, 2009). Graduate School of Arts and Sciences, Dept. of Physics. Includes bibliographical references (p. 114-123).
132

TeV scale leptogenesis, primordial monopoles, and supersymmetry at LHC

Dar, Shahida. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: Qaisar Shafi, Dept. of Physics & Astronomy. Includes bibliographical references.
133

Physics beyond the standard model supersymmetry, dark matter, and LHC phenomenology.

Essig, Rouven. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Physics and Astronomy." Includes bibliographical references.
134

A search for neutral high-mass Higgs bosons decaying into pairs of hadronically decaying tau leptons in 13 TeV collisions recorded by the ATLAS detector

Pickering, Mark Andrew January 2016 (has links)
This thesis outlines the search for neutral Higgs bosons in a mass range of m<sub>H/A</sub> = 200 GeV − 1.2 TeV, decaying to a pair of hadronically decaying tau leptons. The search is performed using &radic;s = 13 TeV proton-proton collision data, corresponding to an integrated luminosity of 3.21 fb<sup>-1</sup>, recorded by the ATLAS detector. No excess over the predicted Standard Model background is observed and upper limits are placed on the production cross section times branching fraction as a function of the mass of the scalar resonance. When combined with the results of the analysis where one of the tau leptons decays to either a muon or electron, the 95% confidence level upper limit on the cross section times branching fraction ranges from 1.4 pb at m<sub>H/A</sub> = 200 GeV to 0.025 pb at m<sub>H/A</sub> = 1.2 TeV for a scalar boson produced via gluon-gluon fusion, and 1.6 pb at m<sub>H/A</sub> = 200 GeV to 0.028 pb at m<sub>H/A</sub> = 1.2 TeV for a scalar boson produced via b-associated production. The results are interpreted in the Minimal Supersymmetric extension to the Standard Model (MSSM) as a limit on the value of tan&beta;, as a function of the mass of the neutral CP-odd MSSM Higgs boson. In the mmod+ scenario, the 95% confidence level upper limit is tan&beta; &LT; 7.6 for m<sub>A</sub> = 200 GeV, and tan&beta; &LT; 47 for m<sub>A</sub> = 1 TeV. For the mass range m<sub>A</sub> &GT; 500 GeV, the upper limit on tan&beta; is improved in comparison to previous ATLAS searches.
135

A study of longitudinal Hadronic shower leakage and the development of a correction for its associated effects at √s = 8 TeV with the ATLAS detector

Gupta, Shaun January 2015 (has links)
In the high energy environment of the Large Hadron Collider, there is a finite probability for the longitudinal tail of the hadronic shower represented by a jet to leak out of the calorimeter, commonly referred to as longitudinal hadronic shower leakage, or jet 'punchthrough'. This thesis prescribes a method for identifying such 'punch-through' jets via the use of muon activity found behind a jet in the ATLAS muon spectrometer, finding an occurrence rate of up to 18% in the worst affected regions. 'Punch-through' jets were found to degrade the measured jet energy scale by up to 30%, and jet energy resolution by a factor of 3. A correction to remove these effects was developed in Monte Carlo and validated in data, with associated systematic uncertainties derived. The correction was found to negate the degradation of the measured jet energy scale, improving the jet energy resolution by up to 10% in the worst affected regions, and up to 1.6% overall. The correction was integrated into the final 2012 ATLAS jet energy calibration scheme as the fifth step of the Global Sequential corrections. The prescription developed in this thesis to derive the correction is currently being used by ATLAS in Run II of the Large Hadron Collider.
136

Detectors and physics at a future linear collider

Xu, Boruo January 2017 (has links)
An electron-positron linear collider is an option for future large particle accelerator projects. Such a collider would focus on precision tests of the Higgs boson properties. This thesis describes three studies related to the optimisation of highly granular calorimeters and one study on the sensitivity of Higgs couplings at CLIC. Photon reconstruction algorithms were developed for highly granular calorimeters of a future linear collider detector. A sophisticated pattern recognition algorithm was implemented, which uses the topological properties of electromagnetic showers to identify photon candidates and separate them from nearby particles. It performs clustering of the energy deposits in the detector, followed by topological characterisation of the clusters, with the results being considered by a multivariate likelihood analysis. This algorithm leads to a significant improvement in the reconstruction of both single photons and multiple photons in high energy jets compared to previous reconstruction software. The reconstruction and classification of tau lepton decay products was studied. Utilising highly granular calorimeters, the high resolution of energy and invariant mass of the tau decay products enabled a high classification rate. A hypothesis test was performed for expected decay final states. A multivariate analysis was trained to classify decay final states with a machine learning method. The performance of tau decay classification is used for the electromagnetic calorimeter optimisation at the ILC or CLIC. A proof-of-principle analysis using the correlation between the polarisations of the tau pair from a boson decay as a signature to differentiate the Higgs boson from the Z boson is presented. Sensitivity of Higgs couplings at CLIC was studied using the double Higgs production process. Algorithms were developed for signal event selection. The event selection relies on the jet reconstruction and the flavour tagging. A multivariate analysis is performed to select signal events. An attempt at extracting Higgs trilinear self-coupling and quartic coupling was conducted.
137

Calculation of webs in non-Abelian gauge theories using unitarity cuts

Waelkens, Andries Jozef Nicolaas January 2017 (has links)
When calculating scattering processes in theories involving massless gauge bosons, such as gluons in Quantum Chromodynamics (QCD), one encounters infrared (IR), or soft, divergences. To obtain precise predictions, it is important to have exact expressions for these IR divergences, which are present in any on-shell scattering amplitude. Due to their long wavelength, soft gluons factorise with respect to short-distance, or hard, interactions and can be captured by correlators of semi-infinite Wilson lines. The latter obey a renormalisation group equation, which gives rise to exponentiation. The exponent can be represented diagrammatically in terms of weighted sums of Feynman diagrams, called webs. A web with L external legs, each with ni gluon attachments, is denoted (n1; n2; : : : ; nL). In this way all soft gluon interactions can be described by a soft anomalous dimension. It is currently known at three loops with lightlike kinematics, and at two loops with general kinematics. Our work is a step towards a three-loop result in general kinematics. In recent years, much progress has been made in understanding the general physical properties of scattering amplitudes and in exploiting these properties to calculate specific amplitudes. At the same time, we have discovered a lot of structure underpinning the space of multiple polylogarithms, the functions in terms of which most known amplitudes can be written. General properties include analyticity, implying that scattering amplitudes are analytic functions except on certain branch cuts, and unitarity, or conservation of probability. These two properties are both exploited by unitarity cuts. Unitarity cuts provide a diagrammatic way of calculating the discontinuities of a Feynman diagram across its branch cuts, which is often simpler than calculating the diagram itself. From this discontinuity, the original function can be reconstructed by performing a dispersive integral. In this work, we extend the formalism of unitarity cuts to incorporate diagrams involving Wilson-line propagators, where the inverse propagator is linear in the loop momenta, rather than the quadratic case which has been studied before. To exploit this for the calculation of the soft anomalous dimension, we first found a suitable momentum-space IR regulator and corresponding prescription, and then derived the appropriate largest time equation (LTE). We find that, as in the case of the scalar diagrams, most terms contributing to the LTE turn out to be zero, albeit for different reasons. This simplifies calculations considerably. This formalism is then applied to the calculation of webs with non-lightlike Wilson lines. As a test, we first looked at webs that have been previously studied using other methods. It emerges that, when using the correct variables, the dispersive integrals one encounters here are trivial, illustrating why unitarity cuts are a particularly useful tool for the calculation of webs. We observe that our technique is especially efficient when looking at diagrams involving three-gluon vertices, such as the (1; 1; 1) web and the Y diagram between two lines. We then focus on three-loop diagrams connecting three or four external non-lightlike lines and involving a three-gluon vertex. We calculate the previously unknown three-loop three-leg (1; 1; 3) web in general kinematics. We obtain a result which agrees with the recently calculated lightlike limit. We also develop a technique to test our results numerically using the computer program SecDec, and we find agreement with our analytical result. The result for the (1; 1; 3) web can then be exploited to gain insight into the more complicated three-loop four-leg (1; 1; 1; 2) web. Indeed, the (1; 1; 1; 2) web reduces to the (1; 1; 3) web in a certain collinear limit. We propose an ansatz for the (1; 1; 1; 2) web in general kinematics, based on a conjectured basis of multiple polylogarithms. The result for the (1; 1; 3) web, together with the known result for the lightlike limit of the (1; 1; 1; 2) web, imposes strong constraints on the ansatz. Using these constraints, we manage to fix all but four coefficients in the ansatz. We fit the remaining coefficients numerically, but find that the quality of the fit is not good. We find possible explanations for this poor quality. This calculation is still a work in progress. Our results provide a major step towards the full calculation of the three-loop soft anomalous dimension for non-lightlike Wilson lines. We calculated new results for three-loop webs, and also deepened the understanding of webs in general. We confirm a conjecture about the functional dependence of the soft anomalous dimension on the cusp angles. We also confirm earlier findings about the symbol alphabet of the relevant functions. This confirms the remarkable simplicity found earlier in the expressions for the soft anomalous dimension.
138

Measurements of charmless B⁰s meson decays at LHCb

Morris, Adam Benjamin January 2017 (has links)
Using 3 fbˉ1 of proton-proton collisions, collected at centre-of-mass energies of √s = 7 and 8 TeV by the LHCb detector, several measurements of charmless B⁰s meson decays are made. A search is also performed for a highly suppressed B⁰ decay. First, the branching fraction of the B0⁰s→ ØØ decay is measured to be B(B⁰s→ ØØ) = (1.84 ± 0.05(stat) ± 0.07(syst) ± 0.11(fs=fd) ± 0.12(norm))X10ˉ⁵; where the third and fourth uncertainties arise from the fragmentation fraction fs/fd and the branching fraction of the normalisation mode. This represents a factor of five reduction in the statistical uncertainty compared to the previous best measurement. An upper limit on the branching fraction of the mode B⁰→ ØØ is set at B(B⁰→ ØØ) < 2.8 X 10ˉ⁸ (90% CL). This is a factor of seven improvement over the previous best measurement. An amplitude analysis of the B⁰s→ ØK+Kˉ decay is performed, wherein first observations of the decay modes B⁰s→ Øf´2(1525) and B⁰s→ ØØ(1680) are made. The branching fraction of the B⁰s→ Øf´2(1525) decay is measured to be B(B⁰s→ Øf´2 (1525)) = (1.63 ± 0.18(stat) ± 0.12(syst) ± 0.29(model) ± 0.17(norm)) X 10ˉ⁶; where the 'model' uncertainty arises from the choice of amplitude model. The longitudinal polarisation fraction of the decay B⁰s→ Øf´2(1525) is measured to be F0 = (86.6 ± 3.4 ± 0.8 ± 2.0 (model))%.
139

Subleading corrections to hadronic cross-sections at high energies

Cockburn, James David January 2017 (has links)
The Large Hadron Collider (LHC) has provided, and will continue to provide, data for collisions at the highest energies ever seen in a particle accelerator. A strong knowledge of the properties of amplitudes for Quantum Chromodynamics in the High Energy Limit is therefore important to interpret this data. We study this limit in the context of the High Energy Jets (HEJ) formalism. This formalism resums terms in the perturbative expansion of the cross-section that behave like αn/s log (s/-t)ⁿ¯¹, which are enhanced in this limit. Understanding this region is particularly important in certain key analyses at the LHC: for example, Higgs-boson- plus-dijet analyses where cuts are applied to pick out events with a large mjj and in many searches for new physics. In this thesis, we discuss two directions in which HEJ's accuracy has been improved. Firstly, we look at adding descriptions of partonic subprocesses which are formally sub-leading in the jet cross-section but Leading Logarithmic (LL) in the particular subprocess itself. This required the derivation of new effective vertices that describe the emission of a quark/anti-quark pair in a way that is consistent with the resummation procedure. The inclusion of such processes reduces HEJ's dependence on fixed-order calculations and marks an important step towards full Next-to-Leading Logarithmic (NLL) accuracy in the inclusive dijet cross-section. The second extension was to improve our description of events involving the emission of a Higgs boson along with jets. Specifically, we derive new effective vertices which keep the full dependence on the quark mass that appears in the loops that naturally arise in such amplitudes. The formalism is also simple enough to allow for any number of extra nal state jets in the process. Therefore, HEJ is unique in its ability to provide predictions for high-multiplicity Higgs-plus-jets processes with full nite quark mass e ects. Such a calculation is far beyond the reach of any xed order approach.
140

Tale of two loops : simplifying all-plus Yang-Mills amplitudes

Mogull, David Gustav January 2017 (has links)
Pure Yang-Mills amplitudes with all external gluons carrying positive helicity, known as all-plus amplitudes, have an especially simple structure. The tree amplitudes vanish and, up to at least two loops, the loop-level amplitudes are related to those of N = 4 super-Yang-Mills (SYM) theory. This makes all-plus amplitudes a useful testing ground for new methods of simplifing more general classes of amplitudes. In this thesis we consider three new approaches, focusing on the structure before integration. We begin with the planar (leading-colour) sector. A D-dimensional local-integrand presentation, based on four-dimensional local integrands developed for N = 4 SYM, is developed. This allows us to compute the planar six-gluon, two-loop all-plus amplitude. Its soft structure is understood before integration, and we also perform checks on collinear limits. We then proceed to consider subleading-colour structures. A multi-peripheral colour decomposition is used to find colour factors based on underlying tree-level amplitudes via generalised unitarity cuts. This allows us to find the integrand of the full-colour, two-loop, five-gluon all-plus amplitude. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. Finally, we consider representations satisfying colour-kinematics duality. We discuss obstacles to finding such numerators in the context of the same five-gluon amplitude at two loops. The obstacles are overcome by adding loop momentum to our numerators to accommodate tension between the values of certain cuts and the symmetries of certain diagrams. Control over the size of our ansatz is maintained by identifying a highly constraining, but desirable, symmetry property of our master numerator.

Page generated in 0.0603 seconds