• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 25
  • 11
  • 11
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 271
  • 158
  • 154
  • 147
  • 88
  • 61
  • 50
  • 46
  • 44
  • 41
  • 40
  • 40
  • 40
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Časová kalibrace kalorimetru ATLAS/Tilecal pomocí jetů / Tine calibration of the ATLAS Tile Calorimeter using jets

Poláček, Stanislav January 2020 (has links)
The ATLAS experiment is one of the two general-purpose detectors at the Large Hadron Collider at CERN near Geneva. The goals of this particle physics experiment are the search for new physics phenomena and precision measurement of the particle interactions. Tilecal is the central hadronic calorimeter of the ATLAS. The calorimeter time calibration is important for the time-of-flight measurement of particles (used in some analyses) as well as for the actual energy reconstruction. 1
92

A measurement of top quark pair and photon production cross section with CMS detector

Makouski, Mikhail January 1900 (has links)
Doctor of Philosophy / Physics / Andrew G. Ivanov / In this thesis the measurement of production cross section of top-quark pairs in association with a photon in proton-proton collisions at a center of mass energy of 8 TeV is presented. The data was recorded at the CMS experiment at the LHC in 2012. This measurement aims to extend our knowledge of top quark properties and help to test consistency of the Standard Model (SM) of particle physics. Data-driven methods are used to estimate the photon identification efficiency and purity. The measured cross-section agrees with the standard model expectation.
93

Searches for new physics using Dijet Angular Distributions in proton-proton collisions at √s = 7 TeV collected with the ATLAS detector

Buckingham, Ryan Mark January 2013 (has links)
Angular distributions of jet pairs (dijets) produced in proton-proton collisions at a centre-of- mass energy √s = 7 TeV have been studied with the ATLAS detector at the Large Hadron Collider using the full 2011 data set with an integrated luminosity of 4.8 fb−1, and reaching dijet masses up to 4.5 TeV. All angular distributions are consistent with QCD predictions. Analysis of the dijet angular distribution, using a novel technique simultaneously employing the dijet mass, is employed. This analysis is sensitive to both resonant new physics and phenomena with a slow-onset in mass. Using this technique, new exclusion limits have been set at 95% credibility level for several hypotheses of physics beyond the standard model including: quantum gravity scales, with 6 extra dimensions, below 4.11 TeV, quark contact interactions below a compositeness scale of 7.6 TeV, and excited quarks with a mass below 2.75 TeV. In a large and complex scientific experiment, such as ATLAS, the collection, management and usability of coherent data and metadata is a challenging operation. The availability of these data to physicists within the experiment is essential to all analysis efforts. A new web-based interface called “RunBrowser”, which makes ATLAS and LHC operations data available to the ATLAS Collaboration, is introduced.
94

Physics studies at a future linear collider

Tabassam, Hajrah January 2012 (has links)
With the start of the Large Hadron Collider(LHC) at CERN, we will obtain a new understanding of the physics beyond our current limits. New discoveries will be made; but we will require a deeper understanding, which the LHC machine, being a hadron collider, will not be able to elucidate. Instead, we will need an e+e- collider to make precision measurements of the newly discovered phenomena. Electroweak symmetry breaking and the origin of fermion and boson masses are fundamental issues in our understanding of particle physics. The essential piece of electroweak symmetry breaking - the Higgs boson - will probably be discovered at the LHC. If there are one, or more, Higgs boson(s) precise measurements of all properties of the Higgs will be very important. In this thesis I present two measurements of Standard Model Higgs boson properties in the context of the International Linear Collider (ILC) at √s = 500 GeV, using the proposed International Linear Detector (ILD). First a performance study of ILD to measure the branching ratios of the Higgs boson with mH = 120 GeV, where the Higgs boson is produced with a Z-boson via the Higgsstralung process, and the Z decays into e+e- or μ+μ-. It will also be essential to study the Higgs Yukawa coupling. Therefore, in the second part of this thesis, I present a study of e+e- → tt¯H with the aim of making a direct measurement of the the top-Higgs coupling, using the semi-leptonic nal state and mH of 120 GeV. I show that the top-Higgs coupling can be measured with an accuracy of better than 28%.
95

The design and construction of the beam scintillation counter for CMS

Bell, Alan James January 2008 (has links)
This thesis presents the design qualification and construction of the Beam Scintillator Counter (BSC) for the CMS Collaboration at CERN in 2007 - 2008. The BSC detector is designed to aid in the commissioning of the Compact Muon Solenoid (CMS) during the first 2 years of operation and provide technical triggering for beam halo and minimum-bias events. Using plastic scintillator tiles mounted at both ends of CMS, it will detect minimum ionizing particles through the low-to-mid luminosity phases of the Large Hadron Collider (LHC) commissioning. During these early phases, the BSC will provide probably the most interesting and widely used data of any of the CMS sub-detectors and will be employed in the track based alignment procedure of the central tracker and commissioning of the Forward Hadron Calorimeter.
96

Direct and Indirect Searches for New Physics at the Electroweak Scale

Miao, Xinyu January 2011 (has links)
The Standard Model (SM) of particle physics is widely taken as an elegant effective theory of nature at the electroweak scale, with new physics expected at higher energy. Collider searches and other experimental inputs play a vital role in our hunt for the unknown physics, offering great insights along the way and eventually establishing the extension to the SM. Here we present our studies on prospects of direct and indirect searches for three types of models beyond the SM. The Inert Doublet Model (IDM) extends the SM electroweak sector by an extra Higgs doublet with a Z₂-symmetry. We first examine the IDM dilepton signal at the LHC with a center-of-mass energy of 14 TeV and find it exceeding SM backgrounds at 3σ–12σ significance level, with 100 fb⁻¹ integrated luminosity. We further show that it is possible to obtain the IDM trilepton signal at the 5σ significance level, with an integrated luminosity of 300 fb⁻¹. The Left-Right Twin Higgs (LRTH) model solves the little Hierarchy problem by taking the SM Higgs as a pseudo-Goldstone boson from the spontaneous breaking of a global symmetry. We focus on the discovery potential of the heavy top quark partner in the LRTH model at the LHC. With a luminosity of 30 fb⁻¹ at the early stage of the LHC operation, we conclude that the heavy top partner could be observed at a significance level above 5σ. Supersymmetric extensions of the SM enable cancellations among loop corrections to the Higgs mass from bosonic and fermionic degrees of freedom, leading to a solution to the well-known Hierarchy problem. However, the supersymmetry has to be broken by certain mechanism. We present an exploration of the B-physics observables and electroweak precision data in three distinct soft supersymmetry-breaking scenarios. Projection for future sensitivities of the precision data is also explored.
97

EXTRACTION OF SURFACE AND SUBSURFACE GEOLOGIC INFORMATION FROM DIGITAL IMAGES OF THE PROPOSED ARIZONA SUPERCONDUCTING SUPER COLLIDER SITES (REMOTE SENSING)

Poulton, Mary Moens, 1962- January 1987 (has links)
No description available.
98

Geotechnical investigations of two potential sites for the proposed Arizona superconducting super collider

Glynn, Mary Eileen, 1960- January 1987 (has links)
Two sites around the Maricopa and Sierrita Mountains respectively were investigated to provide supporting data for the State of Arizona proposal to the Department of Energy to construct a Superconducting Super Collider (SSC) facility. The main feature of the facility is a 53 mile racetrack shaped tunnel. The proposed Maricopa SSC tunnel passes through three main types of rock--approximately 35 miles of indurated fanglomerates, 10 miles of granodiorites and 8 miles of volcanic and sedimentary rocks. The proposed Sierrita SSC tunnel also passes through three main rock types--approximately 19 miles of indurated fanglomerates, 18 miles of granodiorites and granites and 16 miles of volcanic and associated rocks. Data were obtained from three sources--existing data; field investigations including drill logs and geophysics and laboratory testing. Empirical design approaches were compared with rock classifications (RQD, RMR, Q) at the tunnel horizon. Results indicate mostly routine tunneling at both sites. Recommendations are made for: further logging and testing of existing core; further field mapping; additional boreholes in rock and alluvium; and in situ testing of alluvium.
99

Studies of Higgs Boson signals leading to multi-photon final states with The ATLAS detector

Cooper-Smith, Neil January 2011 (has links)
The efficient identification of photons is a crucial aspect in the search for the Higgs boson at ATLAS. With the high luminosity and collision energies provided by the Large Hadron Collider, rejection of backgrounds to photons is of key importance. It is often not feasible to fully simulate background processes that require large numbers of events, due to processing time and disk space constraints. The standard fast simulation program, ATLFAST-I, is able to simulate events ∼1000 times faster than the full simulation program but does not always provide enough detailed information to make accurate background estimates. To bridge the gap, a set of photon reconstruction efficiency parameterisations, for converted and unconverted photons, have been derived from full simulation events and subsequently applied to ATLFAST-I photons. Photon reconstruction efficiencies for isolated photons from fully simulated and ATLFAST-I, plus parameterisations, events are seen to agree within statistical error. A study into a newly proposed Two Higgs Doublet Model channel, gg → H → hh → γγγγ, where the light Higgs (h) boson is fermiophobic, has been investigated. The channel is of particular interest as it exploits the large production cross-section of a heavy Higgs (H) boson via gluon-fusion at the LHC in conjunction with the enhanced branching ratio of a light fermiophobic Higgs (h) boson to a pair of photons. This channel is characterised by a distinct signature of four high pT photons in the final state. Samples of signal events have been generated across the (mh,mH) parameter space along with the dominant backgrounds. An event selection has been developed with the search performed at generator-level. In addition, the search was also performed with simulated ATLFAST-I events utilising the above photon reconstruction efficiency parameterisations. For both analyses, the expected upper limit on the cross-section at 95% confidence level is determined and exclusion regions of the (mh,mH) parameter space are defined for integrated luminosities of 1 f b−1 and 10 f b−1 in seven fermiophobic model benchmarks.
100

Search for the Higgs Boson in the process H→ZZ→llνν produced via vector-Boson fusion with the ATLAS detector

Edwards, Clive January 2012 (has links)
The search potential of a Standard Model Higgs boson in the Vector Boson Fusion production mechanism with Higgs boson decaying to two leptons and two neutrinos via decay to two Z bosons with the ATLAS detector is investigated. The ATLAS detector is a general purpose detector in operation at CERN measuring proton-proton collisions produced by the Large Hadron Collider. This channel has been shown to have high sensitivity at large Higgs mass, where large amounts of missing energy in the signal provide good discrimination over expected backgrounds. This work takes a first look at whether the sensitivity of this channel may be improved using the remnants of the vector boson fusion process to pro- vide extra discrimination, particularly at lower mass where sensitivity of the main analysis is reduced because of lower missing energy. Simulated data samples at centre of mass energy 7 Te V are used to derive signal significances over the mass range between 200-600 Ge V / c2. Because of varying signal properties with mass, a low and a high mass event selection were developed and optimized. A comparison between simulated and real data (collected in 2010) is made of variables used in the analysis and the effect of pileup levels corresponding to those in the 2010 data is investigated. Possible methods to estimate some of the main backgrounds to this search are described and discussed. The impact • of important theoretical and detector related systematics are taken into account. Final results are presented in the form of 95 % Confidence Level exclusion limits on the signal cross section relative to the SM prediction as a function of Higgs boson mass, based on an integrated luminosity of 33.4 pb -1 of data collected during 2010.

Page generated in 0.0515 seconds