Spelling suggestions: "subject:"win higgs model"" "subject:"win higgs godel""
1 |
Direct and Indirect Searches for New Physics at the Electroweak ScaleMiao, Xinyu January 2011 (has links)
The Standard Model (SM) of particle physics is widely taken as an elegant effective theory of nature at the electroweak scale, with new physics expected at higher energy. Collider searches and other experimental inputs play a vital role in our hunt for the unknown physics, offering great insights along the way and eventually establishing the extension to the SM. Here we present our studies on prospects of direct and indirect searches for three types of models beyond the SM. The Inert Doublet Model (IDM) extends the SM electroweak sector by an extra Higgs doublet with a Z₂-symmetry. We first examine the IDM dilepton signal at the LHC with a center-of-mass energy of 14 TeV and find it exceeding SM backgrounds at 3σ–12σ significance level, with 100 fb⁻¹ integrated luminosity. We further show that it is possible to obtain the IDM trilepton signal at the 5σ significance level, with an integrated luminosity of 300 fb⁻¹. The Left-Right Twin Higgs (LRTH) model solves the little Hierarchy problem by taking the SM Higgs as a pseudo-Goldstone boson from the spontaneous breaking of a global symmetry. We focus on the discovery potential of the heavy top quark partner in the LRTH model at the LHC. With a luminosity of 30 fb⁻¹ at the early stage of the LHC operation, we conclude that the heavy top partner could be observed at a significance level above 5σ. Supersymmetric extensions of the SM enable cancellations among loop corrections to the Higgs mass from bosonic and fermionic degrees of freedom, leading to a solution to the well-known Hierarchy problem. However, the supersymmetry has to be broken by certain mechanism. We present an exploration of the B-physics observables and electroweak precision data in three distinct soft supersymmetry-breaking scenarios. Projection for future sensitivities of the precision data is also explored.
|
Page generated in 0.0425 seconds