Spelling suggestions: "subject:"inert doublet model"" "subject:"inert doublet godel""
1 |
Direct and Indirect Searches for New Physics at the Electroweak ScaleMiao, Xinyu January 2011 (has links)
The Standard Model (SM) of particle physics is widely taken as an elegant effective theory of nature at the electroweak scale, with new physics expected at higher energy. Collider searches and other experimental inputs play a vital role in our hunt for the unknown physics, offering great insights along the way and eventually establishing the extension to the SM. Here we present our studies on prospects of direct and indirect searches for three types of models beyond the SM. The Inert Doublet Model (IDM) extends the SM electroweak sector by an extra Higgs doublet with a Z₂-symmetry. We first examine the IDM dilepton signal at the LHC with a center-of-mass energy of 14 TeV and find it exceeding SM backgrounds at 3σ–12σ significance level, with 100 fb⁻¹ integrated luminosity. We further show that it is possible to obtain the IDM trilepton signal at the 5σ significance level, with an integrated luminosity of 300 fb⁻¹. The Left-Right Twin Higgs (LRTH) model solves the little Hierarchy problem by taking the SM Higgs as a pseudo-Goldstone boson from the spontaneous breaking of a global symmetry. We focus on the discovery potential of the heavy top quark partner in the LRTH model at the LHC. With a luminosity of 30 fb⁻¹ at the early stage of the LHC operation, we conclude that the heavy top partner could be observed at a significance level above 5σ. Supersymmetric extensions of the SM enable cancellations among loop corrections to the Higgs mass from bosonic and fermionic degrees of freedom, leading to a solution to the well-known Hierarchy problem. However, the supersymmetry has to be broken by certain mechanism. We present an exploration of the B-physics observables and electroweak precision data in three distinct soft supersymmetry-breaking scenarios. Projection for future sensitivities of the precision data is also explored.
|
2 |
Matéria escura e o modelo do dubleto inerte / Dark matter and the inert doublet modelLuiz, Vivian Ventura Ferreira 15 September 2017 (has links)
Submitted by VIVIAN VENTURA FERREIRA LUIZ (vivisventura@gmail.com) on 2018-06-14T17:51:35Z
No. of bitstreams: 1
dissertacao.pdf: 1531949 bytes, checksum: 577b1199d5fc233ab7cc7e672975849a (MD5) / Approved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2018-06-15T17:55:01Z (GMT) No. of bitstreams: 1
luiz_vvf_me_ift.pdf: 1531949 bytes, checksum: 577b1199d5fc233ab7cc7e672975849a (MD5) / Made available in DSpace on 2018-06-15T17:55:01Z (GMT). No. of bitstreams: 1
luiz_vvf_me_ift.pdf: 1531949 bytes, checksum: 577b1199d5fc233ab7cc7e672975849a (MD5)
Previous issue date: 2017-09-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O problema da matéria escura é uma das questões abertas da cosmologia e da física de partículas. Inúmeras observações, em diferentes escalas astronômicas, sustentam que a quantidade de matéria luminosa presente não é capaz de explicar o comportamento observado. A solução para esta inconsistência foi obtida através da introdução de uma nova forma de matéria que, não interagindo com a luz, foi intitulada por matéria escura. O Modelo Padrão da Cosmologia indica que esta componente contribui com mais de 80% da densidade de matéria no Universo, deve ser estável, não relativística e sua densidade relíquia deve combinar com as medidas obtidas pelas flutuações da CMB. Apesar disso, a natureza da matéria escura ainda é um mistério. Entre as partículas candidatas à matéria escura os mais populares são os chamados WIMPs. Esta espécie é considerada uma relíquia térmica e podem fornecer uma abundância compatível com a observada. Nesta direção, o presente trabalho então, trata uma extensão do Modelo Padrão da Física de Partículas, uma vez que este modelo não fornece nenhuma partícula apropriada à matéria escura, chamada Modelo do Dubleto Inerte, que é obtido adicionando um novo dubleto escalar por meio de uma simetria Z_2 que desenvolve uma configuração de vácuo trivial. Dentro do novo espectro de partículas estudamos aquela que parece propor um candidato viável à matéria escura. / The problem of dark matter is one of the open questions of cosmology and particle physics. Several observations, at different astronomical scales, maintain that the amount of light matter present is not able to explain the observed behavior. The solution to this inconsistency was obtained by introducing a new form of matter which, not interacting with light, was titled as dark matter. The Standard Model of Cosmology indicates that this component contributes with more than 80% of the matter density in the Universe, must be stable, non relativistic and its relic density should match with the measurements obtained by the fluctuations of the CMB. Despite this, the nature of dark matter is still a mystery. Among the candidate particles for dark matter the most popular are the so-called WIMPs. This species is considered a thermal relic and can provide an abundance compatible with that observed. In this direction, the present work then deals with an extension of the Standard Model of Particle Physics, since this model does not provide any particle appropriate to dark matter, called Inert Doublet Model, which is obtained by adding a new scalar doublet through a Z_2 symmetry that develops a trivial vacuum configuration. Inside this new spectrum of particles we study the one that seems to propose a viable candidate to the dark matter.
|
3 |
The Fall and Rise of Antimatter: Probing Leptogenesis and Dark Matter ModelsVertongen, Gilles V.M.P. 25 September 2009 (has links)
Big Bang Nucleosynthesis (BBN), together with the analyses of the Cosmic Microwave Background (CMB) anisotropies, confirm what our day to day experience of life attests : antimatter is far less present than matter in the Universe. In addition, these observables also permit to evaluate that there exists about one proton for every 10^{10} photons present in the Universe. This is in contradiction with expectations coming from the standard hot big bang, where no distinction between matter and antimatter is made, and where subsequent annihilations would lead to equal matter and antimatter contents, at a level 10^{−10} smaller than the observed one. The Standard Model of fundamental interactions fails to explain this result, leading us to search for ‘Beyond the Standard Model’ physics.
Among the possible mechanism which could be responsible for the creation of such a matter asymmetry, leptogenesis is particularly attractive because it only relies on the same ingredients previously introduced to generate neutrino masses. Unfortunatelly, this elegant proposal suffers from a major difficulty : it resists to any tentative of being probed by our low energy observables. In this thesis, we tackle the problem the other way around and propose a way to falsify this mechanism. Considering the type-I leptogenesis mechanism, i.e. a mechanism based on the asymmetric decay of right-handed neutrinos, in a left-right symmetric framework, we show that the observation of a right-handed gauge boson W_R at future colliders would rule out any possibility for such mechanism to be responsible of the matter asymmetry present in our Universe.
Another intriguing question that analyses of the anisotropies of the CMB confirmed is the presence of a non-baryonic component of matter in our Universe, i.e. the dark matter. As hinted by observations of galactic rotation curves, it should copiously be present in our galactic halo, but is notoriously difficult to detect directly. We can take advantage on the fact that antimatter almost disappeared from our surroundings to detect the contamination of cosmic rays from standard sources the annihilation products of dark matter would produce.
The second subject tackled in this work is the study of the imprints the Inert Doublet Modem (IDM) could leave in (charged) cosmic rays, namely positrons, antprotons and antideuterons. This model, first proposed to allow the Bout-Englert-Higgs particle to evade the Electroweak Precision Test (EWPT) measurements, introduces an additional scalar doublet which is inert in the sense that it does not couple directly to fermions. This latter property brings an additional virtue to this additional doublet : since it interacts weakly with particles, it can play the role of dark matter. This study will be done in the light of the data recently released by the PAMELA, ATIC and Fermi-GLAST collaborations, which reported e^± excesses in two different energy ranges.
|
4 |
The fall and rise of antimatter: probing leptogenesis and dark matter modelsVertongen, Gilles 25 September 2009 (has links)
Big Bang Nucleosynthesis (BBN), together with the analyses of the Cosmic Microwave Background (CMB) anisotropies, confirm what our day to day experience of life attests :antimatter is far less present than matter in the Universe. In addition, these observables also permit to evaluate that there exists about one proton for every 10^{10} photons present in the Universe. This is in contradiction with expectations coming from the standard hot big bang, where no distinction between matter and antimatter is made, and where subsequent annihilations would lead to equal matter and antimatter contents, at a level 10^{−10} smaller than the observed one. The Standard Model of fundamental interactions fails to explain this result, leading us to search for ‘Beyond the Standard Model’ physics.<p><p>Among the possible mechanism which could be responsible for the creation of such a matter asymmetry, leptogenesis is particularly attractive because it only relies on the same ingredients previously introduced to generate neutrino masses. Unfortunatelly, this elegant proposal suffers from a major difficulty :it resists to any tentative of being probed by our low energy observables. In this thesis, we tackle the problem the other way around and propose a way to falsify this mechanism. Considering the type-I leptogenesis mechanism, i.e. a mechanism based on the asymmetric decay of right-handed neutrinos, in a left-right symmetric framework, we show that the observation of a right-handed gauge boson W_R at future colliders would rule out any possibility for such mechanism to be responsible of the matter asymmetry present in our Universe.<p><p>Another intriguing question that analyses of the anisotropies of the CMB confirmed is the presence of a non-baryonic component of matter in our Universe, i.e. the dark matter. As hinted by observations of galactic rotation curves, it should copiously be present in our galactic halo, but is notoriously difficult to detect directly. We can take advantage on the fact that antimatter almost disappeared from our surroundings to detect the contamination of cosmic rays from standard sources the annihilation products of dark matter would produce.<p><p>The second subject tackled in this work is the study of the imprints the Inert Doublet Modem (IDM) could leave in (charged) cosmic rays, namely positrons, antprotons and antideuterons. This model, first proposed to allow the Bout-Englert-Higgs particle to evade the Electroweak Precision Test (EWPT) measurements, introduces an additional scalar doublet which is inert in the sense that it does not couple directly to fermions. This latter property brings an additional virtue to this additional doublet :since it interacts weakly with particles, it can play the role of dark matter. This study will be done in the light of the data recently released by the PAMELA, ATIC and Fermi-GLAST collaborations, which reported e^± excesses in two different energy ranges. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0871 seconds