Spelling suggestions: "subject:"collision avoidance"" "subject:"collision voidance""
51 |
Collision Avoidance And Coalition Formation Of Multiple Unmanned Aerial Vechicles In High Density Traffic EnvironmentsManathara, Joel George 05 1900 (has links) (PDF)
This thesis addresses the problems of collision avoidance and coalition formation of multiple UAVs in high density traffic environments, proposes simple and efficient algorithms as solutions, and discusses their applications in multiple UAV missions.
First, the problem of collision avoidance among UAVs is considered and deconfliction algorithms are proposed. The efficacy of the proposed algorithms is tested using simulations involving random flights in high density traffic. Further, the proposed collision avoidance algorithms are implemented using realistic six degree of freedom UAV models. The studies in this thesis show that implementation of the proposed collision avoidance algorithms leads to a safer and efficient operational airspace occupied by multiple UAVs.
Next, coalition formation in a search and prosecute mission involving a large number of UAVs and targets is considered. This problem is shown to be NP-hard and a sub-optimal but polynomial time coalition formation strategy is proposed. Simulations are carried out to show that this coalition formation algorithm works well. The coalition formation algorithm is then extended to handle situations where the UAVs have limited communication ranges.
Finally, this thesis considers some multiple UAV missions that require the application of collision avoidance and coalition formation techniques. The problem of multiple UAV rendezvous is tackled by using (i) a consensus among the UAVs to attain rendezvous and (ii) the collision avoidance algorithm previously developed for safety. The thesis also considers a search and prosecute mission where the UAVs also have to avoid collisions among one another.
In summary, the main contributions of this thesis include (a) novel collision avoidance algorithms, which are conceptually simple and easy to implement, for resolving path conflicts – both planar and three dimensional – in a high density traffic airspace with UAVs in free flight and (b) efficient coalition formation algorithms for search and prosecute task with large number of UAVs and targets where UAVs have limited communication ranges and targets are maneuvering. Simulations to evaluate the performance of algorithms based on these concepts to carry out realistic tasks by UAV swarms are also given.
|
52 |
Developing a training program for the traffic alert and collision avoidance system in contextFleming, Elizabeth Scott 26 March 2013 (has links)
The Traffic alert and Collision Avoidance System (TCAS) is an aircraft collision avoidance system designed to prevent mid-air collisions. During an advisory, danger is imminent, and TCAS is assumed to have better, more up-to-date information than the ground operated air traffic control (ATC) facility. Following a TCAS RA is generally the safe course of action during an advisory. However, pilot compliance with RAs is surprisingly low. Results from a TCAS monitoring study show pilots are not complying with many TCAS advisories. As revealed by pilot-submitted Aviation Safety Reporting System (ASRS) reports, this noncompliance could be attributed, in part, to pilot confusion to TCAS operation as well as misunderstandings of the appropriate response to a TCAS issued advisory.
This thesis details the development and evaluation of a TCAS training program intended to improve pilots' understanding of TCAS use for collision avoidance in a range of traffic situations. The training program integrated Demonstration Based and Event Based Training techniques. Its efficacy was analyzed in an integrated ATC-cockpit simulator study in which eighteen commercial airline pilots were asked to complete the TCAS training program and afterwards experienced twelve experimental traffic events. The trained pilots' performance was compared to the performance of 16 baseline pilots who did not receive the modified training.
Overall, the training program did have a significant impact on the pilots' behavior and response to TCAS advisories. The measure Time Pilots First Achieved Compliance decreased with the trained pilots, as did the measure Autopilot Disconnect Time After RA Initiation. Trained pilots exhibited less aggressive performance in response to a TCAS RA (including a decrease in the measures Altitude Deviation Over Duration Of RA, Average Vertical Rate Difference, Maximum Vertical Rate Difference, and Maximum Vertical Rate). The measure Percent Compliance did not significantly vary between trained and baseline pilots, although trained pilots had a more consistent response in the traffic event with conflicting ATC guidance. Finally, on the post-experiment questionnaires, pilots commented on their increase in understanding of TCAS as well as an increase in their trust in the advisory system.
Results of this research inform TCAS training objectives provided by the FAA as well as the design of TCAS training. Additionally, conclusions extend more broadly to improved training techniques for other similar complex, time-critical situations.
|
53 |
An investigation into road safety education in KwaZulu-NatalSunker, Neeraj January 2005 (has links)
Thesis (M.Tech.:Civil Engineering)-Dept of Civil Engineering and Survey, Durban Institute of Technology, 2005
xiv, 134 leaves, Annexures A-C / Road fatalities claim more than one million lives annually worldwide. The emotional, social and economic impact of road traffic fatalities demands urgent attention globally. This epidemic of road traffic fatalities is plaguing everyone, especially the poorer nations. Some countries like Australia and Sweden have been more successful than others in combating this epidemic.
South Africa is currently seeking strategies to combat this epidemic because South Africa’s road traffic fatalities have been increasing annually, with a substantial percentage of teenagers and young adults between the ages of 16 and 29 contributing to these statistics. This age group will become or already have become part of the economically active population and concern is mounting as to why this particular age group is vulnerable.
This thesis provides an overview of the road safety problem globally, nationally, provincially and locally and also looks at the historical factors that have contributed to this problem. The Victorian model, which has been classified as the ‘world’s best practice’, has been reviewed.
A pilot survey was conducted at the Mangosuthu Technikon and the focal survey was conducted at the tertiary institutions in the Durban area. Students from this sector were selected as they fall in the most vulnerable age group and data was collected from them on various aspects of road safety.
On analysing the data, various problems were identified, in particular, lack of resources and limited education pertaining to road safety. A range of possible solutions is recommended and the focus areas are the 3E’s namely: education, enforcement and engineering. However, the focal recommendation is on education and looks at the possibility of introducing learner’s licence testing to the grade 12 syllabi.
|
54 |
AIS-vektorer i antikollision - En relativ sanning / AIS-vectors in collision avoidance - A relative truthLewander, Gunnar, Måspers, Ola January 2010 (has links)
Intervjuer med kunniga på AIS-området har utförts parallellt med en enkät riktad till aktiva befäl ute till sjöss. Detta i syfte att ta reda på dels hur detta hjälpmedel bör användas vad avser antikollision, dels hur det faktiskt används i praktiken. AIS, Automatic Identification System, är ett informationsdelningssystem som hjälper fartyg att navigera säkert genom att sända ut egen navigationsdata och samtidigt ta emot motsvarande information från andra fartyg. Systemet nyttjas även som informationssystem för landbaserade stationer såsom VTS-centraler och kustbevakning. Undersökningen har engagerat och visat att expertisen anser att AIS, i många avseenden, är ett bra och användbart hjälpmedel som bör komplettera övrig utrustning vid bedömning om kollisionsrisk. Vidare visar enkäten att ARPA-systemet, trots vissa inneboende brister, tillmäts större förtroende än AIS och AIS-vektorer används därför sparsamt. Enkäten visar även att en stor del av de aktiva inte är främmande för att göra avsteg från sjövägsreglerna emedan expertisen i huvudsak avråder från sådant. / Interviews with experts, in the field of AIS, have been conducted alongside a quantitative survey aimed at certified seagoing officers. The purpose of the survey was to investigate how this navigational aid preferably should be used in collision avoidance, in contrast to how it is used in reality. AIS, Automatic Identification System, is an information sharing system to assist in safe navigation by transmitting the own vessels navigational data while, at the same time, receiving corresponding information from other ships. The system is also utilized by land based stations such as VTS-centers and coast guards. The investigation shows that experts conclude AIS to be, in many aspects, a good and useful aid which should be used in collaboration with other equipment when assessing risk of collision. Furthermore, the survey show that the ARPA-system, in spite of some internal shortcomings, is awarded more trust than AIS and AIS vectors are therefore rarely used. The survey also shows that a large number of officers are open to deviating from the COLREGs while the experts, in general, advise against it.
|
55 |
Optimisation-based verification process of obstacle avoidance systems for unmanned vehiclesThedchanamoorthy, Sivaranjini January 2014 (has links)
This thesis deals with safety verification analysis of collision avoidance systems for unmanned vehicles. The safety of the vehicle is dependent on collision avoidance algorithms and associated control laws, and it must be proven that the collision avoidance algorithms and controllers are functioning correctly in all nominal conditions, various failure conditions and in the presence of possible variations in the vehicle and operational environment. The current widely used exhaustive search based approaches are not suitable for safety analysis of autonomous vehicles due to the large number of possible variations and the complexity of algorithms and the systems. To address this topic, a new optimisation-based verification method is developed to verify the safety of collision avoidance systems. The proposed verification method formulates the worst case analysis problem arising the verification of collision avoidance systems into an optimisation problem and employs optimisation algorithms to automatically search the worst cases. Minimum distance to the obstacle during the collision avoidance manoeuvre is defined as the objective function of the optimisation problem, and realistic simulation consisting of the detailed vehicle dynamics, the operational environment, the collision avoidance algorithm and low level control laws is embedded in the optimisation process. This enables the verification process to take into account the parameters variations in the vehicle, the change of the environment, the uncertainties in sensors, and in particular the mismatching between model used for developing the collision avoidance algorithms and the real vehicle. It is shown that the resultant simulation based optimisation problem is non-convex and there might be many local optima. To illustrate and investigate the proposed optimisation based verification process, the potential field method and decision making collision avoidance method are chosen as an obstacle avoidance candidate technique for verification study. Five benchmark case studies are investigated in this thesis: static obstacle avoidance system of a simple unicycle robot, moving obstacle avoidance system for a Pioneer 3DX robot, and a 6 Degrees of Freedom fixed wing Unmanned Aerial Vehicle with static and moving collision avoidance algorithms. It is proven that although a local optimisation method for nonlinear optimisation is quite efficient, it is not able to find the most dangerous situation. Results in this thesis show that, among all the global optimisation methods that have been investigated, the DIviding RECTangle method provides most promising performance for verification of collision avoidance functions in terms of guaranteed capability in searching worst scenarios.
|
56 |
Game theoretical modelling of a driver's interaction with active steeringNa, Xiaoxiang January 2014 (has links)
No description available.
|
57 |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms / Gradient-Based Steering for Vision-Based Crowd Simulation AlgorithmsTeÃfilo Bezerra Dutra 16 June 2015 (has links)
nÃo hà / Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases. / Alguns dos algoritmos mais recentes para simulaÃÃo de multidÃo equipam agentes com um sistema visual sintÃtico para auxiliÃ-los em sua locomoÃÃo. Eles oferecem perspectivas promissoras ao imitarem de forma mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente. Nesta tese, à proposto um novo laÃo de percepÃÃo/aÃÃo para dirigir agentes ao longo de trajetÃrias livres de colisÃes que melhoram significativamente a qualidade dos simuladores de multidÃo baseados em visÃo. Em contraste com abordagens anteriores - que fazem agentes evitarem colisÃes de maneira puramente reativa - à sugerida a exploraÃÃo de toda gama de adaptaÃÃes possÃveis e a retenÃÃo da que for Ãtima localmente. Para isto, à introduzida uma funÃÃo de custo, baseada em variÃveis de percepÃÃo, que estima a situaÃÃo atual do agente considerando tanto os riscos de futuras colisÃes como o destino desejado. SÃo entÃo computadas as derivadas parciais dessa funÃÃo com respeito a todas adaptaÃÃes de movimento possÃveis. O agente adapta seu movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuiÃÃes: a definiÃÃo de um esquema de controle de propÃsito geral para a orientaÃÃo de agentes baseados em visÃo sintÃtica; e a proposiÃÃo de funÃÃes de custo para avaliar o perigo da situaÃÃo atual. As melhorias obtidas com o modelo sÃo demonstradas em diversos casos.
|
58 |
Remote Intelligent Air Traffic Control Systems for Non-Controlled AirportsBrown, Glenn, n/a January 2003 (has links)
Non-controlled airports are literally that - uncontrolled. Safe separation is achieved by pilot vigilance. The consensus of reports on incidences at noncontrolled airports generally conclude that pilots cannot rely entirely on vision to avoid collision and attempts should be made to obtain all available traffic information to enable a directed traffic search. Ideally, a system is required which has the ability to provide advice to all parties to ensure separation minima is maintained. Provision of a such a system would remove a measure of pressure from the pilot to allow that person to devote their attention to their prime responsibility of flying the aircraft. To this end, research on use of intelligent remote advisory systems for non-controlled airports was undertaken with emphasis on those systems which could minimize human resources and associated recurring costs, to provide a measure of repeatability and to provide an acceptable level of safety. A rule based system was developed and evaluated. The evaluation showed that use of a rule based system as the basis of an intelligent remote air traffic control system for non-controlled airports is a viable proposition. In test scenarios, collision hazards were identified and evasion tactics generated. For a full operational system, the application of the rules and definition of the aircraft circuit area may need refining; however, the results are certainly encouraging.
|
59 |
Angle-only based collision risk assessment for unmanned aerial vehicles / Vinkelbaserad kollisionsriskbedömning för obemannade flygfarkosterLindsten, Fredrik January 2008 (has links)
<p>This thesis investigates the crucial problem of collision avoidance for autonomous vehicles. An anti-collision system for an unmanned aerial vehicle (UAV) is studied in particular. The purpose of this system is to make sure that the own vehicle avoids collision with other aircraft in mid-air. The sensor used to track any possible threat is for a UAV limited basically to a digital video camera. This sensor can only measure the direction to an intruding vehicle, not the range, and is therefore denoted an angle-only sensor. To estimate the position and velocity of the intruder a tracking system, based on an extended Kalman filter, is used. State estimates supplied by this system are very uncertain due to the difficulties of angle-only tracking. Probabilistic methods are therefore required for risk calculation. The risk assessment module is one of the essential parts of the collision avoidance system and has the purpose of continuously evaluating the risk for collision. To do this in a probabilistic way, it is necessary to assume a probability distribution for the tracking system output. A common approach is to assume normality, more out of habit than on actual grounds. This thesis investigates the normality assumption, and it is found that the tracking output rapidly converge towards a good normal distribution approximation. The thesis furthermore investigates the actual risk assessment module to find out how the collision risk should be determined. The traditional way to do this is to focus on a critical time point (time of closest point of approach, time of maximum collision risk etc.). A recently proposed alternative is to evaluate the risk over a horizon of time. The difference between these two concepts is evaluated. An approximate computational method for integrated risk, suitable for real-time implementations, is also validated. It is shown that the risk seen over a horizon of time is much more robust to estimation accuracy than the risk from a critical time point. The integrated risk also gives a more intuitively correct result, which makes it possible to implement the risk assessment module with a direct connection to specified aviation safety rules.</p>
|
60 |
Development and Evaluation of Multiple Objects Collision Mitigation by Braking Algorithms / Utveckling och utvärdering av CMbB-algoritmer för multipla objektKivrikis, Andreas, Tjernström, Johan January 2004 (has links)
<p>A CMbB system is a system that with the help of sensors in the front of a car detects when a collision in unavoidable. When a situation like that is detected, the brakes are activated. The decision of whether to activate the brakes or not is taken by a piece of software called a decision maker. This software continuously checks for routes that would avoid an object in front of the car and as long as a path is found nothing is done. Volvo has been investigating several different CMbB-systems, and the research done by Volvo has previously focused on decision makers that only consider one object in front of the car. By instead taking all present objects in consideration, it should be possible to detect an imminent collision earlier. Volvo has developed some prototypes but needed help evaluating their performance. </p><p>As part of this thesis a testing method was developed. The idea was to test as many cases as possible but as the objects’ possible states increase, the number of test cases quickly becomes huge. Different ways of removing irrelevant test cases were developed and when these ideas were realized in a test bench, it showed that about 98 % of the test cases could be removed. </p><p>The test results showed that there is clearly an advantage to consider many objects if the cost of increased complexity in the decision maker is not too big. However, the risk of false alarms is high with the current decision makers and several possible improvements have therefore been suggested.</p>
|
Page generated in 0.0594 seconds