Spelling suggestions: "subject:"collision prediction"" "subject:"kollision prediction""
1 |
Transferability of community-based macro-level collision prediction models for use in road safety planning applicationsKhondaker, Bidoura 11 1900 (has links)
This thesis proposes the methodology and guidelines for community-based macro-level CPM
transferability to do road safety planning applications, with models developed in one spatial-temporal
region being capable of used in a
different spatial-temporal region. In doing this.
the macro-level CPMs developed for the Greater Vancouver Regional District (GVRD) by
Lovegrove and Sayed (2006, 2007) was used in a model transferability study. Using those
models from GVRD and data from Central Okanagan Regional District (CORD), in the
Province of British Columbia. Canada. a transferability test has been conducted that involved
recalibration of the 1996 GVRD models to Kelowna, in 2003 context. The case study was
carried out in three parts. First, macro-level CPMs for the City of Kelowna were developed
using 2003 data following the research by GVRD CPM development and use. Next, the 1996
GVRD models were recalibrated to see whether they could yield reliable prediction of the
safety estimates for Kelowna, in 2003 context. Finally, a
comparison between the results of
Kelowna’s own developed models and the transferred models was conducted to determine
which models yielded better results.
The results of the transferability study revealed that macro-level CPM transferability was
possible and no more complicated than micro-level CPM transferability. To facilitate the
development of reliable community-based, macro-level collision prediction models, it was
recommended that CPMs be transferred rather than developed from scratch whenever and
wherever communities lack sufficient data of adequate quality. Therefore, the transferability
guidelines in this research, together with their application in the case studies, have been
offered as a contribution towards model transferability to do road safety planning
applications, with models developed in one spatial-temporal region being capable of used in
a different spatial-temporal region.
|
2 |
Transferability of community-based macro-level collision prediction models for use in road safety planning applicationsKhondaker, Bidoura 11 1900 (has links)
This thesis proposes the methodology and guidelines for community-based macro-level CPM
transferability to do road safety planning applications, with models developed in one spatial-temporal
region being capable of used in a
different spatial-temporal region. In doing this.
the macro-level CPMs developed for the Greater Vancouver Regional District (GVRD) by
Lovegrove and Sayed (2006, 2007) was used in a model transferability study. Using those
models from GVRD and data from Central Okanagan Regional District (CORD), in the
Province of British Columbia. Canada. a transferability test has been conducted that involved
recalibration of the 1996 GVRD models to Kelowna, in 2003 context. The case study was
carried out in three parts. First, macro-level CPMs for the City of Kelowna were developed
using 2003 data following the research by GVRD CPM development and use. Next, the 1996
GVRD models were recalibrated to see whether they could yield reliable prediction of the
safety estimates for Kelowna, in 2003 context. Finally, a
comparison between the results of
Kelowna’s own developed models and the transferred models was conducted to determine
which models yielded better results.
The results of the transferability study revealed that macro-level CPM transferability was
possible and no more complicated than micro-level CPM transferability. To facilitate the
development of reliable community-based, macro-level collision prediction models, it was
recommended that CPMs be transferred rather than developed from scratch whenever and
wherever communities lack sufficient data of adequate quality. Therefore, the transferability
guidelines in this research, together with their application in the case studies, have been
offered as a contribution towards model transferability to do road safety planning
applications, with models developed in one spatial-temporal region being capable of used in
a different spatial-temporal region.
|
3 |
Transferability of community-based macro-level collision prediction models for use in road safety planning applicationsKhondaker, Bidoura 11 1900 (has links)
This thesis proposes the methodology and guidelines for community-based macro-level CPM
transferability to do road safety planning applications, with models developed in one spatial-temporal
region being capable of used in a
different spatial-temporal region. In doing this.
the macro-level CPMs developed for the Greater Vancouver Regional District (GVRD) by
Lovegrove and Sayed (2006, 2007) was used in a model transferability study. Using those
models from GVRD and data from Central Okanagan Regional District (CORD), in the
Province of British Columbia. Canada. a transferability test has been conducted that involved
recalibration of the 1996 GVRD models to Kelowna, in 2003 context. The case study was
carried out in three parts. First, macro-level CPMs for the City of Kelowna were developed
using 2003 data following the research by GVRD CPM development and use. Next, the 1996
GVRD models were recalibrated to see whether they could yield reliable prediction of the
safety estimates for Kelowna, in 2003 context. Finally, a
comparison between the results of
Kelowna’s own developed models and the transferred models was conducted to determine
which models yielded better results.
The results of the transferability study revealed that macro-level CPM transferability was
possible and no more complicated than micro-level CPM transferability. To facilitate the
development of reliable community-based, macro-level collision prediction models, it was
recommended that CPMs be transferred rather than developed from scratch whenever and
wherever communities lack sufficient data of adequate quality. Therefore, the transferability
guidelines in this research, together with their application in the case studies, have been
offered as a contribution towards model transferability to do road safety planning
applications, with models developed in one spatial-temporal region being capable of used in
a different spatial-temporal region. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
|
4 |
Investigating and modeling traffic collision frequency and possibility for EdmontonShaheed, Gurjeet Singh 06 1900 (has links)
This study was conducted to investigate and model the high traffic collision frequencies in the City of Edmonton, Canada. Consistent collision spikes were observed on Fridays compared to the other days of the week. The first Negative Binomial model was formulated to establish a relation between the collision frequency and the independent variables. The second Multinomial logistic regression model was formulated to examine the probability of age categories and gender involved in collision for each day of week considering collision has happened.
The proposed collision prediction models were found good. They could provide a realistic estimate of expected collision frequency and properties of collision for a particular day as a function of number of hours of daylight, number of hours of snowfall, visibility, age and gender. It is hoped that predicted collision frequency will help the decision maker to quantify traffic safety of Edmonton and improve the scenario. / Transportation Engineering
|
5 |
Investigating and modeling traffic collision frequency and possibility for EdmontonShaheed, Gurjeet Singh Unknown Date
No description available.
|
6 |
Use of Advanced Techniques to Estimate Zonal Level Safety Planning Models and Examine their Temporal TransferabilityHadayeghi, Alireza 24 September 2009 (has links)
Historically, the traditional planning process has not given much attention to the road safety evaluation of development plans. To make an informed, defensible, and proactive choice between alternative plans and their safety implications, it is necessary to have a procedure for estimating and evaluating safety performance. A procedure is required for examining the influence of the urban network development on road safety, and in particular, determining the effects of the many variables that affect safety in urban planning.
Safety planning models can provide a decision-support tool that facilitates the assessment of the safety implications of alternative network plans. The first objective of this research study is to develop safety planning models that are consistent with the regional models commonly used for urban transportation planning. Geographically weighted Poisson regression (GWPR), full-Bayesian semiparametric additive (FBSA), and traditional generalized linear modelling (GLM) techniques are used to develop the models. The study evaluates how well each model is able to handle spatial variations in the relationship between collision explanatory variables and the number of collisions in a zone. The evaluation uses measures of goodness of fit (GOF) and finds that the GWPR and FBSA models perform much better than the conventional GLM approach. There is little difference between the GOF values for the FBSA and GWPR models.
The second objective of this research study is to examine the temporal transferability of the safety planning models and alternative updating methods. The updating procedures examine the Bayesian approach and application of calibration factors. The results show that the models are not temporally transferable in a strict statistical sense. However, relative measures of transferability indicate that the transferred models yield useful information in the application context. The results also show that the updated safety planning models using the Bayesian approach predict the number of collisions better than the calibration factor procedure.
|
7 |
Use of Advanced Techniques to Estimate Zonal Level Safety Planning Models and Examine their Temporal TransferabilityHadayeghi, Alireza 24 September 2009 (has links)
Historically, the traditional planning process has not given much attention to the road safety evaluation of development plans. To make an informed, defensible, and proactive choice between alternative plans and their safety implications, it is necessary to have a procedure for estimating and evaluating safety performance. A procedure is required for examining the influence of the urban network development on road safety, and in particular, determining the effects of the many variables that affect safety in urban planning.
Safety planning models can provide a decision-support tool that facilitates the assessment of the safety implications of alternative network plans. The first objective of this research study is to develop safety planning models that are consistent with the regional models commonly used for urban transportation planning. Geographically weighted Poisson regression (GWPR), full-Bayesian semiparametric additive (FBSA), and traditional generalized linear modelling (GLM) techniques are used to develop the models. The study evaluates how well each model is able to handle spatial variations in the relationship between collision explanatory variables and the number of collisions in a zone. The evaluation uses measures of goodness of fit (GOF) and finds that the GWPR and FBSA models perform much better than the conventional GLM approach. There is little difference between the GOF values for the FBSA and GWPR models.
The second objective of this research study is to examine the temporal transferability of the safety planning models and alternative updating methods. The updating procedures examine the Bayesian approach and application of calibration factors. The results show that the models are not temporally transferable in a strict statistical sense. However, relative measures of transferability indicate that the transferred models yield useful information in the application context. The results also show that the updated safety planning models using the Bayesian approach predict the number of collisions better than the calibration factor procedure.
|
8 |
Developing A Patient-Specific Model for a Collision Prediction ScriptSimpson, Zakery Tyler January 2020 (has links)
No description available.
|
9 |
Relationship Between Unsignalised Intersection Geometry and Accident RatesArndt, Owen Kingsley January 2004 (has links)
The aim of this research is to determine the effect of unsignalised intersection geometry on the rates of the various types of accidents occurring at unsignalised intersections. A literature review has identified that there is little consistency between the results of previous studies. Some studies found that particular parameters had an opposite effect to what was expected. With this in mind, the research identified reasons for these results and developed two basic approaches to mitigate some of the problems with multi-factor type studies. These approaches are 'maximise the efficiency of data collection' and 'develop techniques for analysing less than perfect data'. A database consisting of 206 unsignalised intersection sites from throughout Queensland was used for analysis. The outcome of this research confirms the validity of several of the current design standards for unsignalised intersections, in addition to identifying new engineering procedures.
|
10 |
Collision Prediction and Prevention in a Simultaneous Multi-User Immersive Virtual EnvironmentHolm, Jeannette E. 07 August 2012 (has links)
No description available.
|
Page generated in 0.0932 seconds