• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing nucleic acid detection using inductively coupled plasma mass spectrometry, by means of metal and nano-particle labelling

Kerr, Samantha Louise January 2008 (has links)
The application of ICP-MS to the fields of proteomics and genomics has arisen in part due to its ability to detect and quantify trace levels of S and P, which are major constituents in proteins and nucleic acids respectively. The development of collision/reaction cell technology and high resolution instruments has enabled these biologically important elements to be measured and quantified at the pg - ng ml-1 level. Despite these advances, the detection limits of P and S are still inferior compared to other elements. Oligonucleotides containing biotin functionality were labelled with Au nano-particles attached to a streptavidin protein to achieve site specific labelling, with 100% labelling efficiency. Each nano-particle contained ~86 Au atoms, resulting in an 882 fold signal enhancement for 24 base length oligonucleotides. However, this enhancement factor was only observed when one oligonucleotide bound to one nano-particle in a 1:1 ratio. Much lower Au labelling efficiencies and signal enhancements were observed when thiolated oligonucleotides were labelled with maleimide functionalised gold nano-particles. This was attributed to the extensive and difficult sample preparation steps that were required prior to labelling. The detection and quantification of adducts formed between DNA and the Pt anti-cancer drugs cisplatin and oxaliplatin were also investigated with ICP-MS. Acid digestion of the carbon based DNA matrix enabled Pt adducts to be quantified at low dose rates of 1 Pt atom per 1 500 000 nucleotides in ~12 μg DNA. Such sensitive mass spectrometric determinations could be employed in clinical tests to detect and quantify low level adducts formed in patients in-vivo. To complement ICP-MS analysis, electrospray ionisation linear ion trap mass spectrometry was employed to study the interaction of oxaliplatin with the four DNA nucleobases. Multiple stage mass spectrometry enabled detailed Pt-nucleobase adduct fragmentation pathways to be established. The method of DNA detection using P in conjunction with the collision cell, or cool plasma to form PO+ was also demonstrated and the limitations of the method, namely, polyatomic interferences and severe matrix effects were highlighted.
2

Development of Analytical methods for the evaluation of the impact of phosphate fertilizer industry on marine environment / Développement de méthodes analytiques pour l’évaluation de l'impact de l'industrie de fertilisants chimiques sur le milieu marin

Maria, Aoun 17 December 2014 (has links)
Développement de méthodes analytiques pour l’évaluation de l'impact de l'industrie de fertilisants chimiques sur le milieu marin / Development of Analytical methods for the evaluation of the impact of phosphate fertilizer industry on marine environment

Page generated in 0.1241 seconds