• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radial Basis Collocation Method for Singularly Perturbed Partial Differential Equations

Li, Fang-wen 21 June 2004 (has links)
In this thesis, we integrate the particular solutions of singularly perturbed partial differential equations into radial basis collocation method to solve two kinds of boundary layer problem.
2

The Trefftz and Collocation Methods for Elliptic Equations

Hu, Hsin-Yun 26 May 2004 (has links)
The dissertation consists of two parts.The first part is mainly to provide the algorithms and error estimates of the collocation Trefftz methods (CTMs) for seeking the solutions of partial differential equations. We consider several popular models of PDEs with singularities, including Poisson equations and the biharmonic equations. The second part is to present the collocation methods (CMs) and to give a unified framework of combinations of CMs with other numerical methods such as finite element method, etc. An interesting fact has been justified: The integration quadrature formulas only affect on the uniformly $V_h$-elliptic inequality, not on the solution accuracy. In CTMs and CMs, the Gaussian quadrature points will be chosen as the collocation points. Of course, the Newton-Cotes quadrature points can be applied as well. We need a suitable dense points to guarantee the uniformly $V_h$-elliptic inequality. In addition, the solution domain of problems may not be confined in polygons. We may also divide the domain into several small subdomains. For the smooth solutions of problems, the different degree polynomials can be chosen to approximate the solutions properly. However, different kinds of admissible functions may also be used in the methods given in this dissertation. Besides, a new unified framework of combinations of CMs with other methods will be analyzed. In this dissertation, the new analysis is more flexible towards the practical problems and is easy to fit into rather arbitrary domains. Thus is a great distinctive feature from that in the existing literatures of CTMs and CMs. Finally, a few numerical experiments for smooth and singularity problems are provided to display effectiveness of the methods proposed, and to support the analysis made.
3

Collocation Method and Model Predictive Control for Accurate Landing of a Mars EDL vehicle

Srinivas, Neeraj 02 February 2021 (has links)
This thesis aims at investigating numerical methods through which the accuracy in landing of a Mars entry-descent-landing (EDL) vehicle can be improved. The methods investigated include the collocation method and model predictive control (MPC). The primary control variable utilized in this study is the bank angle of the spacecraft, which is the angle between the lift vector and the vertical direction. Modulating this vector affects the equations of system of equations and the seven state variables, namely altitude, velocity, latitude, longitude, flight path angle, heading angle and total time taken. An optimizer is implemented which utilizes the collocation method, through which the optimal bank angle is found at every discretized state along the trajectory which are equally separated through a definite timestep, which is a function of the end time state. A 3-sigma wind disturbance model is introduced to the system, as a function of the altitude, which introduces uncertainties to the system, resulting in a final state deviating from the targeted location. The trajectory is split into two parts, for better control of the vehicle during the end stages of flight. The MPC aims at reducing the end state deviation, through the implementation of a predictor-corrector algorithm that propagates the trajectory for a certain number of timesteps, followed by running the optimizer from the current disturbed state to the desired target location. At the end of this analysis, a new set of optimal bank angle are found, which account for the wind disturbances and navigates the EDL vehicle to the desired location. / M.S. / Landing on Mars has always been a process of following a set of predetermined instructions by the spacecraft, in order to reach a calculated landing target. This work aims to take the first steps towards autonomy in maneuvering the spacecraft, and finding a method by which the vehicle navigates itself towards the target. This work determines the optimal control scheme a Mars reentry vehicle must have through the atmosphere to reach the target location, and employs method through which the uncertainty in the final landing location is mitigated. A model predictive controller is employed which corrects the disturbed trajectory of the vehicle at certain timesteps, through which the previously calculated optimal control is changed so as to account for the disturbances. The control is achieved by means of changing the bank angle of the spacecraft, which in turn affects the lift and drag experienced by the vehicle. Through this work, a method has been demonstrated which reduces the uncertainty in final landing location, even with wind disturbances present.
4

Solution Representation and Indentification for Singular neutral Functional Differential Equations

Cerezo, Graciela M. 06 December 1996 (has links)
The solutions for a class of Neutral Functional Di erential Equations (NFDE) with weakly singular kernels are studied. Using singular expansion techniques, a representation of the solution of the NFDE is obtained by studing an associated Volterra Integral Equation. We study the Collocation Method as a projection method for the approximation of solutions for Volterra Integral Equations. Particulary, the possibility of achieving higher order ap- proximations is discussed. Special attention is given to the choice of the projection space and its relation to the smoothness of the approximated solution. Finally, we study the identification problem for a parameter appearing in the weakly singular operator of the NFDE. / Ph. D.
5

On the Increasingly Flat RBFs Based Solution Methods for Elliptic PDEs and Interpolations

Yen, Hong-da 20 July 2009 (has links)
Many types of radial basis functions, such as multiquadrics, contain a free parameter called shape factor, which controls the flatness of RBFs. In the 1-D problems, Fornberg et al. [2] proved that with simple conditions on the increasingly flat radial basis function, the solutions converge to the Lagrange interpolating. In this report, we study and extend it to the 1-D Poisson equation RBFs direct solver, and observed that the interpolants converge to the Spectral Collocation Method using Polynomial. In 2-D, however, Fornberg et al. [2] observed that limit of interpolants fails to exist in cases of highly regular grid layouts. We also test this in the PDEs solver and found the error behavior is different from interpolating problem.
6

Stochastic simulation of the cure of advanced composites

Mesogitis, Tassos January 2015 (has links)
This study focuses on the development of a stochastic simulation methodology to study the effects of cure kinetics uncertainty, in plane fibre misalignment and boundary conditions uncertainty on the cure process of composite materials. Differential Scanning Calorimetry was used to characterise cure kinetics variability of a commercial epoxy resin used in aerospace applications. It was found that cure kinetics uncertainty is associated with variations in the initial degree of cure, activation energy and reaction order. Image analysis was employed to characterise in plane fibre misalignment in a carbon fibre ±45º non-crimp fabric. The experimental results showed that variability in tow orientation was significant with a standard deviation of about 1.2º. A set of experiments using an infusion set-up was carried out to quantify boundary conditions uncertainty related to tool temperature, ambient temperature and surface heat transfer coefficient using thermocouples (tool/ambient temperature) and heat flux sensors (surface heat transfer coefficient). It was concluded that boundary conditions uncertainty can show considerable short term and long term variability. Conventional Monte Carlo and Probabilistic Collocation Method were integrated with a thermo-mechanical cure simulation model in order to investigate the effect of cure kinetics, fibre misalignment and boundary conditions variability on process outcome. The cure model was developed and implemented using a finite element model incorporating appropriate material sub-models of cure kinetics, specific heat capacity, thermal conductivity, moduli, thermal expansion and cure shrinkage. The effect of cure kinetics uncertainty on the temperature overshoot of a thick carbon fibre epoxy flat panel was investigated using the two stochastic simulation schemes. The stochastic simulation results showed that variability in cure kinetics can introduce a significant scatter in temperature overshoot, presenting a coefficient of variation of about 30%. Furthermore, it was shown that the collocation method can offer an efficient solution with significantly lower computational cost compared to Monte Carlo at comparable accuracy. Stochastic simulation of the cure of an angle shaped carbon fibre-epoxy component within the Monte Carlo scheme showed that fibre misalignment can cause considerable variability in the process outcome. The coefficient of variation of maximum residual stress can reach up to approximately 2% (standard deviation of 1 MPa) whilst qualitative and quantitative variations in final distortion of the cured part occur with the standard deviation in twist and corner angle reaching values of 0.4 º and 0.05º respectively. Simulation of the cure of a thin carbon fibre-epoxy panel within the Monte Carlo scheme indicated that surface heat transfer and tool temperature variability dominate variability in cure time, resulting in a coefficient of variation of about 22%. In addition to Monte Carlo, the effect of surface heat transfer coefficient and tool temperature variations on cure time was addressed using the collocation method. It was found that probabilistic collocation is capable of capturing variability propagation with good accuracy while offering tremendous benefits in terms of computational costs.
7

Stochastic collocation methods for aeroelastic system with uncertainty

Deng, Jian 11 1900 (has links)
Computation methods based on the Wiener chaos expansion have been developed to study the behaviors of the aeroelastic system with randomparameters. It is proven that the discrete wavelet transformation is one ofthe most accurate and efficient numerical schemes for this uncertainty quantizationproblem. In this thesis, we propose the stochastic collocation methods(SCM), whichis a type of sampling method combining the strength of the MonteCarlo simulation and the stochastic Galerkin method. The convergence with respect to the number of the nodal points is investigated, and simulation results to aeroelastic models in the presence of uncertainty in the system parameter and due to the initial condition are reported. It is demonstrated that the accuracy of the SCM is comparable to those achieved by using the wavelet chaos expansion. However, the SCM is more straightforward, efficient and easy to implement. / Applied Mathematics
8

Mechanics of Complex Hydraulic Fractures in the Earth's Crust

Sim, Youngjong 24 August 2004 (has links)
Hydraulic fracturing is an important and abundant process in both industrial applications and natural environments. The current work is the first systematic quantitative study of the effect of interaction in and between complex hydraulic fractures at different spatial scales. A mathematical model, based on the boundary collocation method, has been developed. The model has been employed for a typical field case, a highly segmented vein. This vein is well-mapped, and therefore, represents a well constrained example. The computed apertures are compared to the measured apertures. By using the simplest constitutive model, based on an ideal elastic material, and including the effect of interaction between the segments, it was possible to obtain an excellent match at all considered scales. It was also shown that the concept of effective fracture, as currently accepted in the literature, is not always applicable and may lead to unbounded inaccuracy. Unfortunately, in most cases, very little (if any) directly measured data on fracture and material properties is available. An important example of such a weakly constrained case, involving hydraulic fracturing, is diking beneath the seafloor at mid-oceanic ridges. In this study, it is shown that the commonly accepted scenario of a dike propagating from the center of the pressurized magma chamber to the ocean floor is not consistent with conventional fracture mechanics due to the fact that the chamber has the shape of a thin lens. Even at such a large scale (i.e., a kilometer or more), the mechanical principles of elastic interaction appear to be applicable. Since diking is likely to generate a region of high permeability near its margin, in addition to heat, the ongoing hydrothermal activity becomes localized. Our modeling suggests the probable positions of the propagating dikes. Consequently, comparing the observed locations of hydrothermal sites with respect to that of the magma chamber could be useful for constraining the mechanisms of magma lens evolution.
9

Spectral Collocation Methods for Semilinear Problems

Hu, Shih-Cong 01 July 2008 (has links)
In this thesis, we extend the spectral collocation methods(SCM) (i.e., pseudo-spectral method) in Quarteroni and Valli [27] for the semilinear, parameter-dependentproblems(PDP) in the square with the Dirichlet boundary condition. The optimal error bounds are derived in this thesis for both H1 and L2 norms. For the solutions sufficiently smooth, the very high convergence rates can be obtained. The algorithms of the SCM are simple and easy to carry out. Only a few of basis functions are needed so that not only can the high accuracy of the PDP solutions be achieved, but also a great deal of CPU time may be saved. Moreover, for PDP the stability analysis of SCM is also made, to have the same growth rates of condition number as those for Poisson¡¦s equation. Numerical experiments are carried out to verify the theoretical analysis made.
10

Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials

Kilic, Bahattin January 2008 (has links)
The classical continuum theory is not capable of predicting failure without an external crack growth criteria and treats the interface having zero thickness. Alternatively, a nonlocal continuum theory referred to as peridynamic theory eliminates these shortcomings by utilizing formulation that uses displacements, rather than derivatives of displacements, and including material failure in its constitutive relations through the response functions. This study presents a new response function as part of the peridynamic theory to include thermal loading. Furthermore, an efficient numerical algorithm is presented for solution of peridynamic equations. Solution method relies on the discretization of peridynamic equations at collocation points resulting in a set of ordinary differential equations with respect to time. These differential equations are then integrated using explicit methods. In order to improve numerical efficiency of the computations, spatial partitioning is introduced through uniform grids as arrays of linked lists. Furthermore, the domain of interest is divided into subunits each of which is assigned to a specific processor to utilize parallel processing using OpenMP. In order to obtain the static solutions, the adaptive dynamic relaxation method is developed for the solution of peridynamic equations. Furthermore, an approach to couple peridynamic theory and finite element analysis is introduced to take advantage of their salient features. The regions in which failure is expected are modeled using peridynamics while the remaining regions are modeled utilizing finite element method. Finally, the present solution method is utilized for damage prediction of many problems subjected to mechanical, thermal and buckling loads.

Page generated in 0.2974 seconds