Spelling suggestions: "subject:"colloidal crystals"" "subject:"colloidal grystals""
1 |
Silica colloidal crystals as new materials for biomolecule separationsLe, Thai Van. January 2007 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: Mary J. Wirth, Dept. of Chemistry and Biochemistry. Includes bibliographical references.
|
2 |
Colloids in fats the fat crystal as a functional particle /Johansson, Dorota. January 1994 (has links)
Thesis (doctoral)--Lund University, 1994. / Added t.p. with thesis statement inserted.
|
3 |
Structure and Properties of Charged Colloidal SystemsRussell, Emily Ruth 04 December 2014 (has links)
This dissertation explores the changes in structure of colloidal systems on the introduction of repulsive interactions. Colloidal gels are well understood when all particle interactions are attractive, but their structure is fundamentally changed when repulsive interactions compete with those attractive interactions, as in the case of a binary gel of oppositely charged particles. Similarly, colloidal crystals are well understood when interactions are approximately hard-sphere, but again, the structure and material properties change when a long-range repulsion is introduced, giving a colloidal `Wigner' crystal. My research quantitatively investigates these effects in experimental model systems. I use confocal microscopy to directly image in three dimensions suspensions of micron-scale colloidal particles which are monodisperse, index- and density-matched, fluorescent, and electrostatically charged. I use standard image-processing techniques to obtain the precise location of each particle in the imaging volume in order to analyze both global and local structure. In the case of the binary gel, I observe gelation of oppositely charged particles, controlled by varying the total particle volume fraction, the interaction strength, and the mixing ratio of the two particle species. I find that contrary to commonly studied purely attractive gels, in which weakly quenched gels are more compact and less tenuous, particles in these binary gels form fewer contacts and the gels become more tenuous as we approach the gel line, and the average attractive bond number emerges as a critical parameter for gelation. This suggests that a different mechanism governs gel formation and structure in binary gels, in which attractive and repulsive interactions compete. In the case of the long-range-repulsive colloidal `Wigner' crystals, I find a body-centered-cubic crystalline phase at particle volume fractions near 15%, in contrast to the face-centered-cubic crystalline phase found at volume fractions above 50% for hard spheres. The soft interactions in these repulsive crystals permit large fluctuations, with typical particle displacements up to 20% of the nearest-neighbor spacing. I determine the three independent crystalline elastic constants, and find that the crystals are very compliant (c ~ 5-40mPa), and strongly anisotropic at all volume fractions studied. I also observe a sharp interface between the fluid and crystalline phases. / Physics
|
4 |
Preparation and characterization of silver coated metallodielectric spheres /Chen, Dong. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references. Also available in electronic version.
|
5 |
Synthesis and Characterization of Core/Shell Hydrogel Nanoparticles and Their Application to Colloidal Crystal Optical MaterialsMcGrath, Jonathan G. 16 January 2007 (has links)
This dissertation describes the use of spherical micro- and nanoparticles as building blocks for the fabrication of colloidal crystals. The polymer component used in all of the projects that are described herein is poly-N-isopropylacrylamide (pNIPAm). The polymeric identity of particles composed of this soft, hydrogel material, which is also thermoresponsive, contributes to particle self-assembly to form ordered structures. Specifically, particles that possess a core/shell topology were investigated to allow for the localization of distinct polymeric properties. Chapter 2 examines a characterization technique using fluorescence resonance energy transfer (FRET) that was explored to investigate the structure of pNIPAm particles that possess this core/shell topology. Chapters 4-6 investigate strategies to impart both stability and flexibility to the particles so that these properties could assist in particle self-assembly as well as provide a stable construct for the production of robust crystalline materials. Styrene was used as the main monomer component in a copolymer synthesis with NIPAm to achieve poly(styrene-co-N-isopropylacrylamide particles (pS-co-NIPAm) that exhibited both hard and soft properties. Simple drying procedures were used to form crystal assemblies with these particles and the application of these pS-co-NIPAm particle suspensions as processable, photonic inks is also investigated. Chapter 7 examines the ability to physically cross-link colloidal crystals composed of pS-co-NIPAm particles by simple heating methods to produce robust films. The optical properties of these crystal films could be tuned by simple rehydration of the film due to the hydrogel character of the crystal building blocks. Chapters 3 and 5 examine the synthesis and self-assembly strategies of core/shell particles using the properties of pNIPAm shell layers that have been added to different types of core particles (silver or pS-co-NIPAm) for the purposes of fabricating colloidal crystals with enhanced properties using thermal annealing procedures. Chapter 8 explores the use of silver particles as tracers for the characterization of colloidal crystals composed of thermally annealed colloidal crystals composed of pNIPAm hydrogel particles.
|
6 |
Self-assembly approaches to photonic structures /Yin, Yadong. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 187-201).
|
7 |
Topics in colloidal nanocrystals: synthesis and characterization, polymorphism, and self-assemblyGhezelbash, Hossein-Ali 28 August 2008 (has links)
Not available / text
|
8 |
DNA separation in nanoporous microfluidic devicesNazemifard, Neda Unknown Date
No description available.
|
9 |
Topics in colloidal nanocrystals synthesis and characterization, polymorphism, and self-assembly /Ghezelbash, Hossein-Ali, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
10 |
The Effect of Topography on Surface Behavior of Pseudomonas aeruginosaChang, Yow-Ren 17 October 2019 (has links)
Bacterial biofilms are communities of micro-organisms encased a self-produced extracellular matrix. While they form readily in a nature, biofilm formation in man-made systems have economic and health consequences. Prior research demonstrated that topographical features comprised of uniform, micro-meter sized particles hindered the biofilm formation of Pseudomonas aeruginosa (P. aeruginosa), an opportunistic human pathogen. The goal of the present work is to 1) further develop a potential anti-biofilm coating by improving its robustness and 2) study the mechanism(s) by which surface topography hinders biofilm formation. The robustness of a topographical coating comprised of an array of silica particles is improved by the introduction of silica bridges through a sol-gel reaction. To study the mechanism(s), specifically, we hypothesized that the motion, or surface motility, of P. aeruginosa is hindered by the presence of micro-meter scale obstacles via physical obstruction. To test this, we analyzed the behavior of single P. aeruginosa cells at micron-scale spatial resolutions using time-lapse fluorescence microscopy, image analysis, and particle tracking techniques. We fabricated various types of micron-scale topography with curvature (particle arrays) and recti-linear features (vertical steps) and varied the critical dimension within the range of 0.5 – 10 µm which spans the dimensions of a typical P. aeruginosa cell. We found that there was a threshold feature size of 1-2 µm at which bacterial surface motility is drastically impacted. On positively curved topography (particle arrays), we found that the frequent obstacles reduced the average speed of a bacterium from 6.2 0.3 µm per 5 min on a flat surface to 2.1 0.3 µm per 5 min on an array of 2 µm particles. Furthermore, we observed that bacteria often move in-between particles, suggesting that bacteria have difficulty climbing over tall obstacles. To further investigate P. aeruginosa's ability to cope with topography, we examined the effect of recti-linear features (vertical steps) on surface motility. We found that step heights > 0.9 µm drastically reduced the probability of crossing and that the average speed when approaching the step is reduced by a factor of 2. Interestingly, we find that bacteria have a slight preference to traverse down which is against the direction of gravity in our system. In summary, these results offer insights into how a surface motile bacterium copes with a topographical surface. Our data indicate that the topography of a surface can impede the surface motility of bacterium and thus, may be an important mechanism by which topography prevents biofilm formation. / Doctor of Philosophy / Bacteria and other micro-organisms can grow on surfaces such as medical devices and cause infections. Other examples of where bacteria can grow are on drains and pipes causing clogging, and on the hulls of ships, thus increasing drag. The goal of the current work is to investigate material coatings that resist the attachment and growth of bacteria on surfaces. We demonstrate that changing the roughness of the surface can reduce the number of bacteria found on the surface. More specifically, we have made surfaces covered with spheres that are approximately the same size as a bacterium, about 1 micrometer (10x smaller than the diameter of hair). We find that the spheres act as physical obstacles that block bacteria from moving on a surface. These results suggest that changing the micro-scale geometry of a surface may reduce the rate of infections on medical devices or hinder the growth of bacteria in other systems
|
Page generated in 0.0509 seconds