Spelling suggestions: "subject:"color image egmentation"" "subject:"color image asegmentation""
1 |
Segmentação de imagens coloridas baseada na mistura de cores e redes neurais / Segmentation of color images based on color mixture and neural networksDiego Rafael Moraes 26 March 2018 (has links)
O Color Mixture é uma técnica para segmentação de imagens coloridas, que cria uma \"Retina Artificial\" baseada na mistura de cores, e faz a quantização da imagem projetando todas as cores em 256 planos no cubo RGB. Em seguida, atravessa todos esses planos com um classificador Gaussiano, visando à segmentação da imagem. Porém, a abordagem atual possui algumas limitações. O classificador atual resolve exclusivamente problemas binários. Inspirado nesta \"Retina Artificial\" do Color Mixture, esta tese define uma nova \"Retina Artificial\", propondo a substituição do classificador atual por uma rede neural artificial para cada um dos 256 planos, com o objetivo de melhorar o desempenho atual e estender sua aplicação para problemas multiclasse e multiescala. Para esta nova abordagem é dado o nome de Neural Color Mixture. Para a validação da proposta foram realizadas análises estatísticas em duas áreas de aplicação. Primeiramente para a segmentação de pele humana, tendo sido comparado seus resultados com oito métodos conhecidos, utilizando quatro conjuntos de dados de tamanhos diferentes. A acurácia de segmentação da abordagem proposta nesta tese superou a de todos os métodos comparados. A segunda avaliação prática do modelo proposto foi realizada com imagens de satélite devido à vasta aplicabilidade em áreas urbanas e rurais. Para isto, foi criado e disponibilizado um banco de imagens, extraídas do Google Earth, de dez regiões diferentes do planeta, com quatro escalas de zoom (500 m, 1000 m, 1500 m e 2000 m), e que continham pelo menos quatro classes de interesse: árvore, solo, rua e água. Foram executados quatro experimentos, sendo comparados com dois métodos, e novamente a proposta foi superior. Conclui-se que a nova proposta pode ser utilizada para problemas de segmentação de imagens coloridas multiclasse e multiescala. E que possivelmente permite estender o seu uso para qualquer aplicação, pois envolve uma fase de treinamento, em que se adapta ao problema. / The Color Mixture is a technique for color images segmentation, which creates an \"Artificial Retina\" based on the color mixture, and quantizes the image by projecting all the colors in 256 plans into the RGB cube. Then, it traverses all those plans with a Gaussian classifier, aiming to reach the image segmentation. However, the current approach has some limitations. The current classifier solves exclusively binary problems. Inspired by this \"Artificial Retina\" of the Color Mixture, we defined a new \"Artificial Retina\", as well as we proposed the replacement of the current classifier by an artificial neural network for each of the 256 plans, with the goal of improving current performance and extending your application to multiclass and multiscale issues. We called this new approach \"Neural Color Mixture\". To validate the proposal, we analyzed it statistically in two areas of application. Firstly for the human skin segmentation, its results were compared with eight known methods using four datasets of different sizes. The segmentation accuracy of the our proposal in this thesis surpassed all the methods compared. The second practical evaluation of the our proposal was carried out with satellite images due to the wide applicability in urban and rural areas. In order to do this, we created and made available a database of satellite images, extracted from Google Earth, from ten different regions of the planet, with four zoom scales (500 m, 1000 m, 1500 m and 2000 m), which contained at least four classes of interest: tree, soil, street and water. We compared our proposal with a neural network of the multilayer type (ANN-MLP) and an Support Vector Machine (SVM). Four experiments were performed, compared to two methods, and again the proposal was superior. We concluded that our proposal can be used for multiclass and multiscale color image segmentation problems, and that it possibly allows to extend its use to any application, as it involves a training phase, in which our methodology adapts itself to any kind of problem.
|
2 |
Segmentação de imagens coloridas baseada na mistura de cores e redes neurais / Segmentation of color images based on color mixture and neural networksMoraes, Diego Rafael 26 March 2018 (has links)
O Color Mixture é uma técnica para segmentação de imagens coloridas, que cria uma \"Retina Artificial\" baseada na mistura de cores, e faz a quantização da imagem projetando todas as cores em 256 planos no cubo RGB. Em seguida, atravessa todos esses planos com um classificador Gaussiano, visando à segmentação da imagem. Porém, a abordagem atual possui algumas limitações. O classificador atual resolve exclusivamente problemas binários. Inspirado nesta \"Retina Artificial\" do Color Mixture, esta tese define uma nova \"Retina Artificial\", propondo a substituição do classificador atual por uma rede neural artificial para cada um dos 256 planos, com o objetivo de melhorar o desempenho atual e estender sua aplicação para problemas multiclasse e multiescala. Para esta nova abordagem é dado o nome de Neural Color Mixture. Para a validação da proposta foram realizadas análises estatísticas em duas áreas de aplicação. Primeiramente para a segmentação de pele humana, tendo sido comparado seus resultados com oito métodos conhecidos, utilizando quatro conjuntos de dados de tamanhos diferentes. A acurácia de segmentação da abordagem proposta nesta tese superou a de todos os métodos comparados. A segunda avaliação prática do modelo proposto foi realizada com imagens de satélite devido à vasta aplicabilidade em áreas urbanas e rurais. Para isto, foi criado e disponibilizado um banco de imagens, extraídas do Google Earth, de dez regiões diferentes do planeta, com quatro escalas de zoom (500 m, 1000 m, 1500 m e 2000 m), e que continham pelo menos quatro classes de interesse: árvore, solo, rua e água. Foram executados quatro experimentos, sendo comparados com dois métodos, e novamente a proposta foi superior. Conclui-se que a nova proposta pode ser utilizada para problemas de segmentação de imagens coloridas multiclasse e multiescala. E que possivelmente permite estender o seu uso para qualquer aplicação, pois envolve uma fase de treinamento, em que se adapta ao problema. / The Color Mixture is a technique for color images segmentation, which creates an \"Artificial Retina\" based on the color mixture, and quantizes the image by projecting all the colors in 256 plans into the RGB cube. Then, it traverses all those plans with a Gaussian classifier, aiming to reach the image segmentation. However, the current approach has some limitations. The current classifier solves exclusively binary problems. Inspired by this \"Artificial Retina\" of the Color Mixture, we defined a new \"Artificial Retina\", as well as we proposed the replacement of the current classifier by an artificial neural network for each of the 256 plans, with the goal of improving current performance and extending your application to multiclass and multiscale issues. We called this new approach \"Neural Color Mixture\". To validate the proposal, we analyzed it statistically in two areas of application. Firstly for the human skin segmentation, its results were compared with eight known methods using four datasets of different sizes. The segmentation accuracy of the our proposal in this thesis surpassed all the methods compared. The second practical evaluation of the our proposal was carried out with satellite images due to the wide applicability in urban and rural areas. In order to do this, we created and made available a database of satellite images, extracted from Google Earth, from ten different regions of the planet, with four zoom scales (500 m, 1000 m, 1500 m and 2000 m), which contained at least four classes of interest: tree, soil, street and water. We compared our proposal with a neural network of the multilayer type (ANN-MLP) and an Support Vector Machine (SVM). Four experiments were performed, compared to two methods, and again the proposal was superior. We concluded that our proposal can be used for multiclass and multiscale color image segmentation problems, and that it possibly allows to extend its use to any application, as it involves a training phase, in which our methodology adapts itself to any kind of problem.
|
3 |
Intelligent SensorHameed, Tariq, Ashfaq, Ahsan, Mehmood, Rabid January 2012 (has links)
The task is to build an intelligent sensor that can instruct a Lego robot to perform certain tasks. The sensor is mounted on the Lego robot and it contains a digital camera which takes continuous images of the front view of the robot. These images are received by an FPGA which simultaneously saves them in an external storage device (SDRAM). At one time only one image is saved and during the time it is being saved, FPGA processes the image to extract some meaningful information. In front of digital camera there are different objects. The sensor is made to classify various objects on the basis of their color. For the classification, the requirement is to implement color image segmentation based object tracking algorithm on a small Field Programmable Gate array (FPGA). For the color segmentation in the images, we are using RGB values of the pixels and with the comparison of their relative values we get the binary image which is processed to determine the shape of the object. A histogram is used to retrieve object‟s features and saves results inside the memory of FPGA which can be read by an external microcontroller with the help of serial port (RS-232).
|
4 |
A K-MEANS BASED WATERSHED IMAGING SEGMENTATION ALGORITHM FOR BANANA CLUSTER QUALITY INSPECTIONCastillo, Gregorio Alfonso 01 December 2016 (has links)
Banana has become the most commonly consumed fresh fruit among US population. It is a challenge to use computer vision to divide touching bananas, for this purpose a novel image segmentation algorithm is proposed, combining k-means and the watershed transformation. The first part is to extract the background, achieved using a K-means based in the HS space, the second part is individual banana segmentation where a smarter selection of the initial markers from where the watershed transformation grows is attained fusing two morphological filters with different structural elements. The validation of the proposed algorithm has been conducted using 124 experimentally capture banana pictures manually segmented. For background extraction K-means in HS space produced the best performance over the other two tested (Otsu, K-means(L*a*b*), getting average a F1 Score average of 96.99%, Otsu and K-means(L*a*b*) scored 82.58% and 88.06% respectively. The result of the watershed segmentation was also compared with the manual segmentation; The overall performance using the F1 Score in average is 92.28%. The performance would improve with modifications to the system, including a more homogenous illumination, only allowing certain positions to be possible for the bananas cluster, and a more adequate background selection.
|
5 |
Segmentação de imagens coloridas por árvores bayesianas adaptativasPeixoto, Guilherme Garcia Schu January 2017 (has links)
A segmentação de imagens consiste em urna tarefa de fundamental importância para diferentes aplicações em visão computacional, tais como por exemplo, o reconhecimento e o rastreamento de objetos, a segmentação de tomores/lesões em aplicações médicas, podendo também servir de auxílio em sistemas de reconhecimento facial. Embora exista uma extensa literatora abordando o problema de segmentação de imagens, tal tópico ainda continua em aberto para pesquisa. Particularmente, a tarefa de segmentar imagens coloridas é desafiadora devido as diversas inomogeneidades de cor, texturas e formas presentes nas feições descritivas das imagens. Este trabalho apresenta um novo método de clustering para abordar o problema da segmentação de imagens coloridas. Nós desenvolvemos uma abordagem Bayesiana para procura de máximos de densidade em urna distribuição discreta de dados, e representamos os dados de forma hierárquica originando clusters adaptativos a cada nível da hierarquia. Nós aplicamos o método de clustering proposto no problema de segmentação de imagens coloridas, aproveitando sua estrutura hierárquica, baseada em propriedades de árvores direcionadas, para representar hierarquicamente uma imagem colorida. Os experimentos realizados revelaram que o método de clustering proposto, aplicado ao problema de segmentação de imagens coloridas, obteve para a medida de performance Probabilistic Rand lndex (PRI) o valor de 0.8148 e para a medida Global Consistency Error (GCE) o valor 0.1701, superando um total de vinte e um métodos previamente propostos na literatura para o banco de dados BSD300. Comparações visuais confirmaram a competitividade da nossa abordagem em relação aos demais métodos testados. Estes resultados enfatizam a potencialidade do nosso método de clustering para abordar outras aplicações no domínio de Visão Computacional e Reconhecimento de Padrões. / Image segmentation is an essential task for several computer vision applications, such as object recognition, tracking and image retrieval. Although extensively studied in the literature, the problem of image segmentation remains an open topic of research. Particularly, the task of segmenting color images is challenging due to the inhomogeneities in the color regions encountered in natural scenes, often caused by the shapes of surfaces and their interactions with the illumination sources (e.g. causing shading and highlights) This work presents a novel non-supervised classification method. We develop a Bayesian framework for seeking modes on the underlying discrete distribution of data and we represent data hierarchically originating adaptive clusters at each levei of hierarchy. We apply the prnposal clustering technique for tackling the problem of color irnage segmentation, taking advantage of its hierarchical structure based on hierarchy properties of directed trees for representing fine to coarse leveis of details in an image. The experiments herein conducted revealed that the proposed clustering method applied to the color image segmentation problem, achieved for the Probabilistic Rand Index (PRI) performance measure the value of 0.8148 and for the Global Consistency Error (GCE) the value of 0.1701, outperforming twenty-three methods previously proposed in the literature for the BSD300 dataset. Visual comparison confirmed the competitiveness of our approach towards state-of-art methods publicly available in the literature. These results emphasize the great potential of our proposed clustering technique for tackling other applications in computer vision and pattem recognition.
|
6 |
Segmentação de imagens coloridas por árvores bayesianas adaptativasPeixoto, Guilherme Garcia Schu January 2017 (has links)
A segmentação de imagens consiste em urna tarefa de fundamental importância para diferentes aplicações em visão computacional, tais como por exemplo, o reconhecimento e o rastreamento de objetos, a segmentação de tomores/lesões em aplicações médicas, podendo também servir de auxílio em sistemas de reconhecimento facial. Embora exista uma extensa literatora abordando o problema de segmentação de imagens, tal tópico ainda continua em aberto para pesquisa. Particularmente, a tarefa de segmentar imagens coloridas é desafiadora devido as diversas inomogeneidades de cor, texturas e formas presentes nas feições descritivas das imagens. Este trabalho apresenta um novo método de clustering para abordar o problema da segmentação de imagens coloridas. Nós desenvolvemos uma abordagem Bayesiana para procura de máximos de densidade em urna distribuição discreta de dados, e representamos os dados de forma hierárquica originando clusters adaptativos a cada nível da hierarquia. Nós aplicamos o método de clustering proposto no problema de segmentação de imagens coloridas, aproveitando sua estrutura hierárquica, baseada em propriedades de árvores direcionadas, para representar hierarquicamente uma imagem colorida. Os experimentos realizados revelaram que o método de clustering proposto, aplicado ao problema de segmentação de imagens coloridas, obteve para a medida de performance Probabilistic Rand lndex (PRI) o valor de 0.8148 e para a medida Global Consistency Error (GCE) o valor 0.1701, superando um total de vinte e um métodos previamente propostos na literatura para o banco de dados BSD300. Comparações visuais confirmaram a competitividade da nossa abordagem em relação aos demais métodos testados. Estes resultados enfatizam a potencialidade do nosso método de clustering para abordar outras aplicações no domínio de Visão Computacional e Reconhecimento de Padrões. / Image segmentation is an essential task for several computer vision applications, such as object recognition, tracking and image retrieval. Although extensively studied in the literature, the problem of image segmentation remains an open topic of research. Particularly, the task of segmenting color images is challenging due to the inhomogeneities in the color regions encountered in natural scenes, often caused by the shapes of surfaces and their interactions with the illumination sources (e.g. causing shading and highlights) This work presents a novel non-supervised classification method. We develop a Bayesian framework for seeking modes on the underlying discrete distribution of data and we represent data hierarchically originating adaptive clusters at each levei of hierarchy. We apply the prnposal clustering technique for tackling the problem of color irnage segmentation, taking advantage of its hierarchical structure based on hierarchy properties of directed trees for representing fine to coarse leveis of details in an image. The experiments herein conducted revealed that the proposed clustering method applied to the color image segmentation problem, achieved for the Probabilistic Rand Index (PRI) performance measure the value of 0.8148 and for the Global Consistency Error (GCE) the value of 0.1701, outperforming twenty-three methods previously proposed in the literature for the BSD300 dataset. Visual comparison confirmed the competitiveness of our approach towards state-of-art methods publicly available in the literature. These results emphasize the great potential of our proposed clustering technique for tackling other applications in computer vision and pattem recognition.
|
7 |
Segmentação de imagens coloridas por árvores bayesianas adaptativasPeixoto, Guilherme Garcia Schu January 2017 (has links)
A segmentação de imagens consiste em urna tarefa de fundamental importância para diferentes aplicações em visão computacional, tais como por exemplo, o reconhecimento e o rastreamento de objetos, a segmentação de tomores/lesões em aplicações médicas, podendo também servir de auxílio em sistemas de reconhecimento facial. Embora exista uma extensa literatora abordando o problema de segmentação de imagens, tal tópico ainda continua em aberto para pesquisa. Particularmente, a tarefa de segmentar imagens coloridas é desafiadora devido as diversas inomogeneidades de cor, texturas e formas presentes nas feições descritivas das imagens. Este trabalho apresenta um novo método de clustering para abordar o problema da segmentação de imagens coloridas. Nós desenvolvemos uma abordagem Bayesiana para procura de máximos de densidade em urna distribuição discreta de dados, e representamos os dados de forma hierárquica originando clusters adaptativos a cada nível da hierarquia. Nós aplicamos o método de clustering proposto no problema de segmentação de imagens coloridas, aproveitando sua estrutura hierárquica, baseada em propriedades de árvores direcionadas, para representar hierarquicamente uma imagem colorida. Os experimentos realizados revelaram que o método de clustering proposto, aplicado ao problema de segmentação de imagens coloridas, obteve para a medida de performance Probabilistic Rand lndex (PRI) o valor de 0.8148 e para a medida Global Consistency Error (GCE) o valor 0.1701, superando um total de vinte e um métodos previamente propostos na literatura para o banco de dados BSD300. Comparações visuais confirmaram a competitividade da nossa abordagem em relação aos demais métodos testados. Estes resultados enfatizam a potencialidade do nosso método de clustering para abordar outras aplicações no domínio de Visão Computacional e Reconhecimento de Padrões. / Image segmentation is an essential task for several computer vision applications, such as object recognition, tracking and image retrieval. Although extensively studied in the literature, the problem of image segmentation remains an open topic of research. Particularly, the task of segmenting color images is challenging due to the inhomogeneities in the color regions encountered in natural scenes, often caused by the shapes of surfaces and their interactions with the illumination sources (e.g. causing shading and highlights) This work presents a novel non-supervised classification method. We develop a Bayesian framework for seeking modes on the underlying discrete distribution of data and we represent data hierarchically originating adaptive clusters at each levei of hierarchy. We apply the prnposal clustering technique for tackling the problem of color irnage segmentation, taking advantage of its hierarchical structure based on hierarchy properties of directed trees for representing fine to coarse leveis of details in an image. The experiments herein conducted revealed that the proposed clustering method applied to the color image segmentation problem, achieved for the Probabilistic Rand Index (PRI) performance measure the value of 0.8148 and for the Global Consistency Error (GCE) the value of 0.1701, outperforming twenty-three methods previously proposed in the literature for the BSD300 dataset. Visual comparison confirmed the competitiveness of our approach towards state-of-art methods publicly available in the literature. These results emphasize the great potential of our proposed clustering technique for tackling other applications in computer vision and pattem recognition.
|
8 |
Experiments in Image Segmentation for Automatic US License Plate RecognitionDiaz Acosta, Beatriz 09 July 2004 (has links)
License plate recognition/identification (LPR/I) applies image processing and character recognition technology to identify vehicles by automatically reading their license plates. In the United States, however, each state has its own standard-issue plates, plus several optional styles, which are referred to as special license plates or varieties. There is a clear absence of standardization and multi-colored, complex backgrounds are becoming more frequent in license plates. Commercially available optical character recognition (OCR) systems generally fail when confronted with textured or poorly contrasted backgrounds, therefore creating the need for proper image segmentation prior to classification. The image segmentation problem in LPR is examined in two stages: license plate region detection and license plate character extraction from background. Three different approaches for license plate detection in a scene are presented: region distance from eigenspace, border location by edge detection and the Hough transform, and text detection by spectral analysis. The experiments for character segmentation involve the RGB, HSV/HSI and 1976 CIE L*a*b* color spaces as well as their Karhunen-Loéve transforms. The segmentation techniques applied include multivariate hierarchical agglomerative clustering and minimum-variance color quantization. The trade-off between accuracy and computational expense is used to select a final reliable algorithm for license plate detection and character segmentation. The spectral analysis approach together with the K-L L*a*b* transformed color quantization are found experimentally as the best alternatives for the two identified image segmentation stages for US license plate recognition. / Master of Science
|
9 |
Color Image Edge Detection and Segmentation: A Comparison of the Vector Angle and the Euclidean Distance Color Similarity MeasuresWesolkowski, Slawomir January 1999 (has links)
This work is based on Shafer's Dichromatic Reflection Model as applied to color image formation. The color spaces RGB, XYZ, CIELAB, CIELUV, rgb, l1l2l3, and the new h1h2h3 color space are discussed from this perspective. Two color similarity measures are studied: the Euclidean distance and the vector angle. The work in this thesis is motivated from a practical point of view by several shortcomings of current methods. The first problem is the inability of all known methods to properly segment objects from the background without interference from object shadows and highlights. The second shortcoming is the non-examination of the vector angle as a distance measure that is capable of directly evaluating hue similarity without considering intensity especially in RGB. Finally, there is inadequate research on the combination of hue- and intensity-based similarity measures to improve color similarity calculations given the advantages of each color distance measure. These distance measures were used for two image understanding tasks: edge detection, and one strategy for color image segmentation, namely color clustering. Edge detection algorithms using Euclidean distance and vector angle similarity measures as well as their combinations were examined. The list of algorithms is comprised of the modified Roberts operator, the Sobel operator, the Canny operator, the vector gradient operator, and the 3x3 difference vector operator. Pratt's Figure of Merit is used for a quantitative comparison of edge detection results. Color clustering was examined using the k-means (based on the Euclidean distance) and Mixture of Principal Components (based on the vector angle) algorithms. A new quantitative image segmentation evaluation procedure is introduced to assess the performance of both algorithms. Quantitative and qualitative results on many color images (artificial, staged scenes and natural scene images) indicate good edge detection performance using a vector version of the Sobel operator on the h1h2h3 color space. The results using combined hue- and intensity-based difference measures show a slight improvement qualitatively and over using each measure independently in RGB. Quantitative and qualitative results for image segmentation on the same set of images suggest that the best image segmentation results are obtained using the Mixture of Principal Components algorithm on the RGB, XYZ and rgb color spaces. Finally, poor color clustering results in the h1h2h3 color space suggest that some assumptions in deriving a simplified version of the Dichromatic Reflectance Model might have been violated.
|
10 |
Color Image Edge Detection and Segmentation: A Comparison of the Vector Angle and the Euclidean Distance Color Similarity MeasuresWesolkowski, Slawomir January 1999 (has links)
This work is based on Shafer's Dichromatic Reflection Model as applied to color image formation. The color spaces RGB, XYZ, CIELAB, CIELUV, rgb, l1l2l3, and the new h1h2h3 color space are discussed from this perspective. Two color similarity measures are studied: the Euclidean distance and the vector angle. The work in this thesis is motivated from a practical point of view by several shortcomings of current methods. The first problem is the inability of all known methods to properly segment objects from the background without interference from object shadows and highlights. The second shortcoming is the non-examination of the vector angle as a distance measure that is capable of directly evaluating hue similarity without considering intensity especially in RGB. Finally, there is inadequate research on the combination of hue- and intensity-based similarity measures to improve color similarity calculations given the advantages of each color distance measure. These distance measures were used for two image understanding tasks: edge detection, and one strategy for color image segmentation, namely color clustering. Edge detection algorithms using Euclidean distance and vector angle similarity measures as well as their combinations were examined. The list of algorithms is comprised of the modified Roberts operator, the Sobel operator, the Canny operator, the vector gradient operator, and the 3x3 difference vector operator. Pratt's Figure of Merit is used for a quantitative comparison of edge detection results. Color clustering was examined using the k-means (based on the Euclidean distance) and Mixture of Principal Components (based on the vector angle) algorithms. A new quantitative image segmentation evaluation procedure is introduced to assess the performance of both algorithms. Quantitative and qualitative results on many color images (artificial, staged scenes and natural scene images) indicate good edge detection performance using a vector version of the Sobel operator on the h1h2h3 color space. The results using combined hue- and intensity-based difference measures show a slight improvement qualitatively and over using each measure independently in RGB. Quantitative and qualitative results for image segmentation on the same set of images suggest that the best image segmentation results are obtained using the Mixture of Principal Components algorithm on the RGB, XYZ and rgb color spaces. Finally, poor color clustering results in the h1h2h3 color space suggest that some assumptions in deriving a simplified version of the Dichromatic Reflectance Model might have been violated.
|
Page generated in 0.1261 seconds