• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolutionary relationships of the inter/intraspecific color variations on the pereopods of the intertidal hermit crab Clibanarius Dana, 1852 / 潮間帯性ヤドカリ・ヨコバサミ属Clibanarius Dana, 1852の種間および種内の歩脚色彩多様化の進化的背景

Yoshikawa, Akihiro 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22282号 / 理博第4596号 / 新制||理||1659(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 朝倉 彰, 准教授 下村 通誉, 教授 曽田 貞滋 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
2

Improving information perception from digital images for users with dichromatic color vision

Shayeghpour, Omid January 2013 (has links)
Color vision deficiency (CVD) is the inability or limited ability to recognize colors and discriminate between them. A person with this condition perceives a narrower range of colors compared to a person with a normal color vision. A growing number of researchers are striving to improve the quality of life for CVD patients. Finding cure, making rectification equipment, providing simulation tools and applying color transformation methods are among the efforts being made by researchers in this field. In this study we concentrate on recoloring digital images in such a way that users with CVD, especially dichromats, perceive more details from the recolored images compared to the original image. The main focus is to give the CVD user a chance to find information within the picture which they could not perceive before. However, this transformed image might look strange or unnatural to users with normal color vision. During this color transformation process, the goal is to keep the overall contrast of the image constant while adjusting the colors that might cause confusion for the CVD user. First, each pixel in the RGB-image is converted to HSV color space in order to be able to control hue, saturation and intensity for each pixel and then safe and problematic hue ranges need to be found. The method for recognizing these ranges was inspired by a condition called “unilateral dichromacy” in which the patient has normal color vision in one eye and dichromacy in another. A special grid-like color card is designed, having constant saturation and intensity over the entire image, while the hue smoothly changes from one block to another to cover the entire hue range. The next step is to simulate the way this color card is perceived by a dichromatic user and finally to find the colors that are perceived identically from two images and the ones that differ too much. This part makes our method highly customizable and we can apply it to other types of CVD, even personalize it for the color vision of a specific observer. The resulting problematic colors need to be dealt with by shifting the hue or saturation based on some pre-defined rules. The results for the method have been evaluated both objectively and subjectively. First, we simulated a set of images as they would be perceived by a dichromat and compared them with simulated view of our transformed images. The results clearly show that our recolored images can eliminate a lot of confusion from user and convey more details. Moreover, an online questionnaire was created and 39 users with CVD confirmed that the transformed images allow them to perceive more information compared to the original images.

Page generated in 0.1385 seconds