Spelling suggestions: "subject:"column"" "subject:"kolumn""
171 |
A Comprehensive Dynamic Model of the Column Flotation Unit OperationCruz, Eva Brunilda 17 October 1997 (has links)
The core of this project was the development of a column flotation dynamic model that can reasonably predict the changes in the concentrations of all solid and bubble species, along the full column height. A dynamic model of a process is normally composed of a set of partial or ordinary differential equations that describe the state of the process at any given time or position inside the system volume. Such equations can be obtained from fundamental material and/or energy balances, or from phenomenological derivations based on knowledge about the behavior of the system. A phenomenological approach referred to as population balance modeling was employed here.
Initially, a two-phase model was formulated, which represents the behavior of the gas phase in a frother solution. The column was viewed as consisting of three main regions: a collection region, a stabilized froth and a draining froth. Experiments were carried out, based on conductivity techniques, for obtaining empirical data for model validation and parameter estimation. After testing the two-phase model, the equations for the solid species were derived. Consideration of the effects of bubble loading, slurry density and slurry viscosity on bubble rise velocity and, therefore, on air fraction is included in the model. Bubble coalescence in the froth is represented as a rate phenomenon characterized by a series of coalescence efficiency rate parameters. Auxiliary equations that help describe the settling of free particles, the buoyancy of air bubbles, and the processes of attachment and detachment, were also developed and incorporated into the model. The detachment of solids from the bubbles in the froth zones was attributed to coalescence, and it was assumed to be proportional to the net loss of bubble surface area.
Almost all parameters needed to solve the model equations are readily available. The set of differential equations that comprise the model can be solved numerically by applying finite difference approximation techniques. An iteration has to be performed, which involves calculating the product flowrate at steady state, modifying the tailings rate and solving the model again until a mass balance is satisfied. / Ph. D.
|
172 |
Critical height and surface deformation of column-supported embankmentsMcGuire, Michael Patrick 12 December 2011 (has links)
Column-supported embankments with or without basal geosynthetic reinforcement can be used in soft ground conditions to reduce settlement by transferring the embankment load to the columns through stress redistribution above and below the foundation subgrade level. Column-supported embankments are typically used to accelerate construction and/or protect adjacent facilities from additional settlement. The column elements consist of driven piles or formed-in-place columns that are installed in an array to support a bridging layer or load transfer platform. The bridging layer is constructed to enhance load transfer using several feet of compacted sand or sand and gravel that may include one or more layers of high-strength geotextile or geogrid reinforcement.
Mobilization of the mechanisms of load transfer in a column-supported embankment requires some amount of differential settlement between the columns and the embankment as well as between the columns and the foundation soil. When the embankment height is low relative to the clear spacing between columns, there is the risk of poor ride quality due to the reflection of the differential foundation settlement at the surface of the embankment. The minimum embankment height where differential surface settlement does not occur for a particular width and spacing of column is the critical height. The conventional approach is to express critical height as a fixed ratio of the clear span between adjacent columns; however, there is no consensus on what ratio to use and whether a single ratio is applicable to all realistic column arrangements.
The primary objective of this research is to improve the understanding of how column-supported embankments deform in response to differential foundation settlement. A bench-scale experimental apparatus was constructed and the equipment, materials, instrumentation, and test procedures are described. The apparatus was able to precisely measure the deformation occurring at the sample surface in response to differential settlement at the base of the sample. Critical heights were determined for five combinations of column diameter and spacing representing a wide range of possible column arrangements. In addition, tests were performed using four different column diameters in a single column configuration with ability to measure the load acting on the column and apply a surcharge pressure to the sample. In total, 183 bench-scale tests were performed over a range of sample heights, sample densities, and reinforcement stiffnesses. Three-dimensional numerical analyses were conducted to model the experiments. The critical heights calculated using the numerical model agreed with the experimental results.
The results of the laboratory tests and numerical analyses indicate that critical height depends on the width and spacing of the columns and is not significantly influenced by the density of the embankment fill or the presence of reinforcement. A new method to estimate critical height was developed and validated against extensive case histories as well as experimental studies and numerical analyses performed by others. / Ph. D.
|
173 |
Ultimate Strength Analysis of Stiffened Panels Using a Beam-Column MethodChen, Yong 16 January 2003 (has links)
An efficient beam-column approach, using an improved step-by-step numerical method, is developed in the current research for studying the ultimate strength problems of stiffened panels with two load cases: 1) under longitudinal compression, and 2) under transverse compression.
Chapter 2 presents an improved step-by-step numerical integration procedure based on (Chen and Liu, 1987) to calculate the ultimate strength of a beam-column under axial compression, end moments, lateral loads, and combined loads. A special procedure for three-span beam-columns is also developed with a special attention to usability for stiffened panels. A software package, ULTBEAM, is developed as an implementation of this method. The comparison of ULTBEAM with the commercial finite element package ABAQUS shows very good agreement.
The improved beam-column method is first applied for the ultimate strength analysis of stiffened panel under longitudinal compression. The fine mesh elasto-plastic finite element ultimate strength analyses are carried out with 107 three-bay stiffened panels, covering a wide range of panel length, plate thickness, and stiffener sizes and proportions. The FE results show that the three-bay simply supported model is sufficiently general to apply to any panel with three or more bays. The FE results are then used to obtain a simple formula that corrects the beam-column result and gives good agreement for panel ultimate strength for all of the 107 panels. The formula is extremely simple, involving only one parameter: the product λΠorth2.
Chapter 4 compares the predictions of the new beam-column formula and the orthotropic-based methods with the FE solutions for all 107 panels. It shows that the orthotropic plate theory cannot model the "crossover" panels adequately, whereas the beam-column method can predict the ultimate strength well for all of the 107 panels, including the "crossover" panels.
The beam-column method is then applied for the ultimate strength analysis of stiffened panel under transverse compression, with or without pressure. The method is based on a further extension of the nonlinear beam-column theory presented in Chapter 2, and application of it to a continuous plate strip model to calculate the ultimate strength of subpanels. This method is evaluated by comparing the results with those obtained using ABAQUS, for several typical ship panels under various pressures. / Ph. D.
|
174 |
Lot streaming in a two-stage assembly system and a hybrid flow shopCheng, Ming 10 October 2012 (has links)
In this dissertation, we investigate the use of lot streaming in a two-stage assembly system and a two-stage hybrid flow shop in order to improve system performance. Lot streaming accelerates the flow of a production lot through a production process by splitting it into sublots, and then, processing these sublots in an overlapping fashion over the machines, thereby reducing work-in-process and cycle-time. Traditionally, lot streaming has been applied to problems in various flow shop machine configurations. It has also been applied to machine environments of job shop, open shop, and parallel machines. Its application to assembly system is relatively new.
The two-stage assembly system that we consider consists of multiple suppliers at Stage 1 with each supplier producing one type of a subassembly (or a component), and one or more assembly locations at Stage 2, where the subassemblies are then put together. Lot-attached and sublot-attached setup time and cost are encountered on the machines at both the stages, and sublot-attached time and cost are encountered for the transfer of sublots from Stage 1 to Stage 2. Mass customization is an example of such a system in which the final assembly of a product is postponed to capture specific customer demands. Dell Computer constitutes a real-life example of this system. A customer picks his/her computer processor, memory, storage, and other equipment, on Dell's web site. Dell's supply chain is configured to obtain subassemblies from suppliers (stage 1), and then, to assemble the requisite systems in different market areas (stage 2). This enables a reduction in operating cost while improving responsiveness to customers. The problem that we address is as follows: Given a maximum number of sublots of each lot, determine the number of sublots to use (assuming equal sublot sizes), and also, the sequence in which to process the lots, in order to minimize two criteria, namely, makespan, total cost. We propose two column generation-based methods that rely on different decomposition schemes. The results of our computational investigation conducted by using randomly generated data sets reveal that the proposed column generation methods obtain solutions in a few seconds of CPU time while the direct solution by CPLEX of a mixed integer programming model of the problem requires much larger CPU times.
For the hybrid flow shop lot streaming problem, the machine configuration that we consider consists of one machine at Stage 1 and two machines at Stage 2 (designated as 1+2 system). A single lot is to be processed in the system, and the objective is to minimize the makespan. A removal time is associated with each sublot at Stage 1. We present a mixed integer programming model for this problem to determine optimal number of sublots and sublot sizes. First, we consider the case of a given number of sublots for which we develop closed-form expressions to obtain optimal, continuous sublot sizes. Then, we consider determination of optimal number of sublots in addition to their sizes. We develop an upper bound on optimal number of sublots, and use a simple search procedure in conjunction with the closed-form expressions for sublot sizes to obtain an optimal solution. We also consider the problem of determining integer sublot sizes, and propose a heuristic method that directly solves the mixed integer programming model after having fixed values of appropriate variables. The results of our numerical experimentation reveal the efficacy of the proposed method to obtain optimal, continuous sublot sizes, and also, that of the proposed heuristic method to obtain integer sublot sizes, which are within 0.2% of optimal solutions for the testbed of data used, each obtained within a few seconds of CPU time.
The last problem that we address is an extension of the single-lot lot streaming problem for a $1+2$ hybrid flow shop considered above to the case of multiple lots, where each lot contains items of a unique product type. We consider two objectives: minimize makespan, and minimize the sum of the completion times for all the lots. The consideration of multiple lots introduces a complicating issue of sequencing the lots. We use the results derived for the single-lot problem and develop effective heuristic methods for this problem. The results of our computational investigation on the use of different heuristic methods reveal their efficacy in solving this problem. / Ph. D.
|
175 |
Implementation and Demonstration of a Time Domain Modeling Tool for Floating Oscillating Water ColumnsSparrer, Wendelle Faith 13 January 2021 (has links)
Renewable energy is a critical component in combating climate change. Ocean wave energy is a source of renewable energy that can be harvested using Wave Energy Converters (WECs). One such WEC is the floating Oscillating Water Column (OWC), which has been successfully field tested and warrants further exploration. This research implements a publicly accessible code in MatLab and SimuLink to simulate the dynamics of a floating OWC in the time domain. This code, known as the Floating OWC Iterative Time Series Solver (FlOWCITSS), uses the pressure distribution model paired with state space realization to capture the internal water column dynamics of the WEC and estimate pneumatic power generation. Published experimental results of floating moored structures are then used to validate FlOWCITSS. While FlOWCITSS seemed to capture the period and general nature of the heave, surge, and internal water column dynamics, the magnitude of the response sometimes had errors ranging from 1.5% −37%. This error could be caused by the modeling techniques used, or it could be due to uncertainties in the experiments. The presence of smaller error values shows potential for FlOWCITSS to achieve consistently higher fidelity results as the code undergoes further developments. To demonstrate the use of FlOWCITSS, geometry variations of a Backward Bent Duct Buoy (BBDB) are explored for a wave environment and mooring configuration. The reference model from Sandia National Labs, RM6, performed significantly better than a BBDB with an altered stern geometry for a 3 second wave period, indicating that stern geometry can have a significant impact on pneumatic power performance. / Master of Science / Renewable energy is a critical component in combating climate change. Ocean wave energy is a source of renewable energy that can be converted into electricity using Wave Energy Converters (WECs). One such WEC is the floating Oscillating Water Column (OWC), which has been successfully field tested and warrants further exploration. Floating OWCs are partially submerged floating structures that have an internal chamber which water oscillates in. The motions of the water displace air inside this chamber, causing the air to be forced through a high speed turbine, which generates electricity. This research develops a publicly accessible code using MatLab and SimuLink to evaluate the motions and power generation capabilities of floating OWCs. This code is then validated against physical experiments to verify its effectiveness in predicting the device's motions. This publicly accessible code, known as the Floating OWC Iterative Time Series Solver (FlOWCITSS), showed error ranging from 1.5 % - 37% for the most important motions that are relevant to energy harvesting and power generation. These errors could be caused by the numerical models used, or uncertainties in experimental data. The presence of smaller error values shows potential for FlOWCITSS to achieve consistently higher fidelity results as the code undergoes further developments. To demonstrate the use of FlOWCITSS, geometry variations of floating OWCs are explored.
|
176 |
Numerical Modeling of Air-Water Flows in Bubble Columns and Airlift ReactorsStudley, Allison F. 15 January 2011 (has links)
Bubble columns and airlift reactors were modeled numerically to better understand the hydrodynamics and analyze the mixing characteristics for each configuration. An Eulerian-Eulerian approach was used to model air as the dispersed phase within a continuous phase of water using the commercial software FLUENT. The Schiller-Naumann drag model was employed along with virtual mass and the standard k-e turbulence model. The equations were discretized using the QUICK scheme and solved with the SIMPLE coupling algorithm. The flow regimes of a bubble column were investigated by varying the column diameter and the inlet gas velocity using two-dimensional simulations. The typical characteristics of a homogeneous, slug, and heterogeneous flow were shown by examining gas holdup. The flow field predicted using two-dimensional simulations of the airlift reactor showed a regular oscillation of the gas flow due to recirculation from the downcomer and connectors, whereas the bubble column oscillations were random and resulted in gas flow through the center of the column. The profiles of gas holdup, gas velocity, and liquid velocity showed that the airlift reactor flow was asymmetric and the bubble column flow was symmetric about the vertical axis of the column. The average gas holdup in a 10.2 cm diameter bubble column was calculated and the results for the two-dimensional simulation of varying inlet gas velocities were similar to published experimental results. The average gas holdup in the airlift reactor for the three-dimensional simulations compared well with the experiments, and the two-dimensional simulations underpredicted the average gas holdup. / Master of Science
|
177 |
Density Modulated Semi-Packed Micro Gas Chromatography ColumnsChan, Ryan 03 May 2018 (has links)
With the continued evolution of MEMS-based gas chromatography, the drive to develop new standalone systems with lower power consumptions and higher portability has increased. However, with improvements come tradeoffs, and trying to reduce the pressure drop requirements of previously reported semi-packed columns causes a significant sacrifice in separation efficiency. This thesis covers the techniques for evaluating the separation column in a gas chromatography system as well as the important parameters that have the most effect on a column’s efficiency. Ionic liquids are introduced as a stable and versatile stationary phase for micro separation columns. It then describes a MEMS-based separation column design utilizing density modulation of embedded micro-pillars which attempts to optimize the balance between separation efficiency and pressure drop. / Master of Science / Gas chromatography is a technique used by scientists to separate and identify chemical compounds present in a given test mixture. It is a versatile technique that can be used for qualitative and quantitative analysis of complex mixtures in a variety of applications. However, typical gas chromatography systems are confined to a lab because they are large and consume a lot of power. In order to overcome these problems, different research groups have focused their attention towards the development of portable MEMS-based gas chromatography systems. By miniaturizing the various components of a gas chromatography system, these two main issues can be alleviated. This thesis covers the strategies used to develop and evaluate the separation column of a gas chromatography system and introduce a new MEMS-based column design that will further reduce the power consumption.
|
178 |
Evaluation of an advanced fine coal cleaning circuitVenkatraman, Parthasarathy 06 June 2008 (has links)
A new fine-coal cleaning circuit, with potential near-term applications, has been evaluated for treating fine coal (i.e., 28 mesh x 0). This circuit combines a surface-based separator known as Microcel™ column flotation with an enhanced gravity separator known as the Multi-Gravity Separator (MGS). The synergistic effect of combining both processes in a single circuit resulted in improved ash and pyritic sulfur rejection with minimal losses in energy recovery. In addition, technical and economic analyses of this processing scheme suggest it compares favorably with existing post-combustion desulfurization techniques.
A detailed study of the MGS included the development of a model based on fundamental principles of fluid mechanics and mineral processing. The theoretical analyses identified drum speed as the most important MGS operating parameter. To validate these findings, a detailed parametric test program was conducted using coal samples from the Pittsburgh No. 8 and Illinois No. 6 seams. A statistical analysis of the test data also showed that drum speed was the most important variable in controlling the performance of the MGS. The other controlling parameters, i.e., feed percent solids, feed rate and wash-water addition rate, were found to be of lesser importance. The experimental test results were found to be in good agreement with the theoretical predictions obtained using the model. / Ph. D.
|
179 |
Compression Stability of High Strength Steel Sections with Low Strain-HardeningYANG, Demao January 2003 (has links)
Thin-walled steel sections made from high strength thin cold-reduced G550 steel to Australian Standard AS 1397-1993 under compression are investigated experimentally and theoretically in this thesis. This thesis describes three series of compression tests performed on box-section stub columns, box-section long columns and lipped channel section columns cold-formed from high strength steel plates in 0.42 mm or 0.60 mm thickness with nominal yield stress of 550 MPa. The tests presented in this thesis formed part of an Australian Research Council research project entitled: Compression Stability of High Strength Steel Sections with Low Strain-Hardening. For the fix-ended stub column tests, a total of 94 lipped-square and hexagonal section stub columns were tested to study the influence of low strain hardening of G550 steel on the compressive section capacities of the column members. For the pin-ended long column tests, a total of 28 box-section columns were tested to study the stability of members with sections which undergo local instability at loads significantly less than the ultimate loads. For the fix-ended lipped channel section columns, a total of 21 stub and long columns were tested to study the failure resulting from local and distortional buckling with interaction between the modes. A numerical simulation on the three series of tests using the commercial finite element computer program ABAQUS is also presented as part of this thesis. The post-buckling behaviour of thin-walled compression members is investigated. The effect of changing variables, such as geometric imperfections and end boundary conditions is also investigated. The ABAQUS analysis gives accurate simulations of the tests and is in good agreement to the experimental results. Theoretical studies using finite strip methods are presented in this thesis to investigate the buckling behaviour of cold-formed members in compression. The theoretical studies provide valuable information on the local and distortional buckling stresses for use in the interaction buckling studies. The finite strip models used are the semi-analytical and spline models. As expected for the stub columns tests, the greatest effect of low strain hardening was for the stockier sections where material properties play an important role. For the more slender sections where elastic local buckling and post-local buckling are more important, the effect of low strain hardening does not appear to be as significant. The pin-ended and fix-ended long column tests show that interaction, which is between local and overall buckling in the box sections, and between local and distortional buckling in the open channel sections, has a significant effect on their member capacities. The results of the successful column tests and ABAQUS simulation have been compared with the design procedures in the Australian & New Zealand Standard for Cold-Formed Steel Structures AS&NZS 4600 and the North American Specification for Cold-Formed Steel Structural Members prepared by the American Iron and Steel Institute. The stub column tests show that the current design rules give too conservative predictions on the compressive section capacities of the column members; whereas the long column tests show that the current column design rules are unconservative if used in their current form for G550 steel. Three design proposals are presented in this thesis to account for the effects of high strength thin steels on the section and member capacities.
|
180 |
Compression Stability of High Strength Steel Sections with Low Strain-HardeningYANG, Demao January 2003 (has links)
Thin-walled steel sections made from high strength thin cold-reduced G550 steel to Australian Standard AS 1397-1993 under compression are investigated experimentally and theoretically in this thesis. This thesis describes three series of compression tests performed on box-section stub columns, box-section long columns and lipped channel section columns cold-formed from high strength steel plates in 0.42 mm or 0.60 mm thickness with nominal yield stress of 550 MPa. The tests presented in this thesis formed part of an Australian Research Council research project entitled: Compression Stability of High Strength Steel Sections with Low Strain-Hardening. For the fix-ended stub column tests, a total of 94 lipped-square and hexagonal section stub columns were tested to study the influence of low strain hardening of G550 steel on the compressive section capacities of the column members. For the pin-ended long column tests, a total of 28 box-section columns were tested to study the stability of members with sections which undergo local instability at loads significantly less than the ultimate loads. For the fix-ended lipped channel section columns, a total of 21 stub and long columns were tested to study the failure resulting from local and distortional buckling with interaction between the modes. A numerical simulation on the three series of tests using the commercial finite element computer program ABAQUS is also presented as part of this thesis. The post-buckling behaviour of thin-walled compression members is investigated. The effect of changing variables, such as geometric imperfections and end boundary conditions is also investigated. The ABAQUS analysis gives accurate simulations of the tests and is in good agreement to the experimental results. Theoretical studies using finite strip methods are presented in this thesis to investigate the buckling behaviour of cold-formed members in compression. The theoretical studies provide valuable information on the local and distortional buckling stresses for use in the interaction buckling studies. The finite strip models used are the semi-analytical and spline models. As expected for the stub columns tests, the greatest effect of low strain hardening was for the stockier sections where material properties play an important role. For the more slender sections where elastic local buckling and post-local buckling are more important, the effect of low strain hardening does not appear to be as significant. The pin-ended and fix-ended long column tests show that interaction, which is between local and overall buckling in the box sections, and between local and distortional buckling in the open channel sections, has a significant effect on their member capacities. The results of the successful column tests and ABAQUS simulation have been compared with the design procedures in the Australian & New Zealand Standard for Cold-Formed Steel Structures AS&NZS 4600 and the North American Specification for Cold-Formed Steel Structural Members prepared by the American Iron and Steel Institute. The stub column tests show that the current design rules give too conservative predictions on the compressive section capacities of the column members; whereas the long column tests show that the current column design rules are unconservative if used in their current form for G550 steel. Three design proposals are presented in this thesis to account for the effects of high strength thin steels on the section and member capacities.
|
Page generated in 0.084 seconds