Spelling suggestions: "subject:"combinatorial optimization,"" "subject:"ombinatorial optimization,""
61 |
Application of genetic algorithms to Visual Interactive Simulation optimisationGibson, Gary M January 1995 (has links)
Thesis (PhD in Computer and Information Science)--University of South Australia, 1995
|
62 |
Applying external optimisation to dynamic optimisation problemsMoser, Irene. January 2008 (has links)
Thesis (Ph.D) - Swinburne University of Technology, Faculty of Information & Communication Technologies, 2008. / [A thesis submitted in total fulfillment of the requirements of for the degree of Doctor of Philosophy, Faculty of Information and Communication Technologies, Swinburne University of Technology, 2008]. Typescript. Includes bibliographical references p. 193-201.
|
63 |
Active-constraint variable ordering schemes for faster feasibility of mixed integer linear programs /Patel, Jagat, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2002. / Includes bibliographical references (p. 116-119). Also available in electronic format on the Internet.
|
64 |
A linear constraint optimization for the displacement operator in map generalization /Chen, Ji, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2003. / Includes bibliographical references (p. 91-96). Also available in electronic format on the Internet.
|
65 |
2S-PSO a dual state particle swarm optimizer /Hardin, Charles Timothy. January 1900 (has links)
Thesis (Ph.D.)--University of Louisville, 2007. / Adviser: Adel S. Elmaghraby. Includes bibliographical references.
|
66 |
Integrated modern-heuristic and B/B approach for the classical traveling salesman problem on a parallel computer /Lee, Po-wing. January 1999 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 112-117).
|
67 |
Combinatorial optimization and application to DNA sequence analysisGupta, Kapil. January 2008 (has links)
Thesis (Ph.D)--Industrial and Systems Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Lee, Eva K.; Committee Member: Barnes, Earl; Committee Member: Fan, Yuhong; Committee Member: Johnson, Ellis; Committee Member: Yuan, Ming. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
68 |
A group theoretic approach to metaheuristic local search for partitioning problemsKinney, Gary W., Barnes, J. Wesley, January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: J. Wesley Barnes. Vita. Includes bibliographical references.
|
69 |
TSP - Infrastructure for the Traveling Salesperson ProblemHahsler, Michael, Hornik, Kurt 12 1900 (has links) (PDF)
The traveling salesperson (or, salesman) problem (TSP) is a well known and important
combinatorial optimization problem. The goal is to find the shortest tour that visits each
city in a given list exactly once and then returns to the starting city. Despite this simple
problem statement, solving the TSP is difficult since it belongs to the class of NP-complete
problems. The importance of the TSP arises besides from its theoretical appeal from the
variety of its applications. Typical applications in operations research include vehicle
routing, computer wiring, cutting wallpaper and job sequencing. The main application
in statistics is combinatorial data analysis, e.g., reordering rows and columns of data
matrices or identifying clusters. In this paper, we introduce the R package TSP which
provides a basic infrastructure for handling and solving the traveling salesperson problem.
The package features S3 classes for specifying a TSP and its (possibly optimal) solution
as well as several heuristics to find good solutions. In addition, it provides an interface to
Concorde, one of the best exact TSP solvers currently available. (authors' abstract)
|
70 |
Busca Tabu aplicada ao problema de localização de facilidades com restrições de capacidade e fonte unica / Tabu search heuristic for the single source capacited facility location problemPrado, Daniel Fernando Mechlin 21 August 2007 (has links)
Orientador: Vinicius Amaral Armentano / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-09T05:53:35Z (GMT). No. of bitstreams: 1
Prado_DanielFernandoMechlin_M.pdf: 451492 bytes, checksum: 0350938f30a018718f3b59654e155a93 (MD5)
Previous issue date: 2007 / Resumo: Localização de facilidades é uma das atividades da área de logística que envolve decisões do número, localização e tamanho das facilidades a serem usadas. A localização de facilidades é uma questão central no planejamento estratégico de empresas públicas e privadas e está associada à variação da população em uma região, capital de investimento e estimativa de clientes que podem ser servidos. Este trabalho aborda o problema de localização de facilidades com restrições de capacidade e fonte única para atender a demanda de clientes. A fonte única impõe que um cliente seja atendido por uma única facilidade, e o objetivo é minimizar os custos de instalação e atendimento dos clientes. Este problema tem diversas aplicações, incluindo a localização de concentradores em redes de telecomunicações. Trata-se de um problema complexo de otimização combinatória, em que métodos exatos não produzem uma solução ótima em tempo viável, e portanto o uso de métodos heurísticos é pertinente. O objetivo deste trabalho é o desenvolvimento e implementação de um algoritmo de busca tabu para o problema, e comparação de seu desempenho com outros métodos apresentados na literatura.
Palavras-chave: Localização de Facilidades, Otimização Combinatória, Heurística, Busca Tabu / Abstract: Facility location is a logistic problem that involves the decision on the number, location and capacity of facilities to be opened. Facility location is an important area in the strategic planning of public and private companies and is associated with population changes, money availability for investment and the estimation of the number of customers to be served. This work addresses on single source capacitated facility location problem. Single source imposes that each customer must be assigned to only one facility, and the objective is to minimize the installation and transportation costs. This problem has several applications,
including the network concentrator location problem. It is a complex combinatorial optimization problem, which cannot be solved by exact methods in small computational times; therefore, heuristics methods are indicated. The objective of this thesis is the
development and implementation of a tabu search algorithm for the problem and a comparative analysis with other methods available in the literature. Keywords: Facility location, Combinatorial Optimization, Heuristic, Tabu Search / Mestrado / Automação / Mestre em Engenharia Elétrica
|
Page generated in 0.1903 seconds